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When a pressurized fluid is injected into an elastic
matrix, the fluid generates a fracture that grows
along a plane and forms a fluid-filled disc-like shape.
We report a laboratory study of such a fluid-driven
crack in a gelatin matrix, study the crack shape
as a function of time and investigate the influence
of different experimental parameters such as the
injection flow rate, Young’s modulus of the matrix and
fluid viscosity. We choose parameters so that effects of
material toughness are small. We find that the crack
radius R(t) increases with time t according to tα with
α = 0.48 ± 0.04. The rescaled experimental data at
long times for different parameters collapse based on
scaling arguments, available in the literature, showing
R(t) ∝ t4/9 from a balance of viscous stresses from flow
along the crack and elastic stresses in the surrounding
matrix. Also, we measure the time evolution of the
crack shape, which has not been studied before. The
rescaled crack shapes collapse at longer times and
show good agreement with the scaling arguments.
The gelatin system provides a useful laboratory model
for further studies of fluid-driven cracks, which has
important applications such as hydraulic fracturing.

1. Introduction
Fluid-driven cracks in an elastic material are encountered
when studying many problems in geophysics such as
magma transport, which is relevant to crustal processes,
and hydraulic fracturing, which is used as part of a
method to extract oil and gas from an underground
reservoir. In the magma transport problems, the main
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driving force for crack propagation is buoyancy from the density difference between the fluid-
filled crack (magma) and the ambient elastic material (rock) [1–4]. In contrast, in the process
of hydraulic fracturing, the propagation of a crack in a solid matrix is driven by the invasion
of pressurized water or other fluids into rock. In this paper, we report an experimental study
inspired by hydraulic fracturing.

The process of hydraulic fracturing has been modelled using a combination of linear elastic
theory and fluid mechanics. The shape of the crack opened by normal stresses in an elastic
medium is modelled conventionally as a disc- or penny-shaped crack [5,6]. Khristianovic &
Zheltov [7] connected the crack problem with fluid flow to model hydraulic fracturing and
subsequently the fluid-driven penny crack problem has been studied extensively [2,8–10].
Spence & Sharp [11] developed a theory for fluid-driven cracks in an infinite elastic medium,
assuming zero energy dissipation via crack tip extension (zero toughness). Also, Detournay and
co-workers [8,12] focused on the dynamics of the crack tip region and showed that the ratio
between energy dissipation via crack tip extension and viscous dissipation accompanying fluid
flow significantly affects the crack propagation behaviour [9,10].

One of the classical experimental works on hydraulic fracturing was reported by Hubbert &
Willis [13], who investigated the elastic field around the injection point, and its effect on the crack
orientation. In particular, these authors conducted cracking experiments in gelatin and focused on
the early formation of the crack. Also, Bunger [14] developed a method to measure the thickness
of a fluid-driven crack propagating between cemented polymethyl methacrylate (a type of plastic)
blocks and validated the behaviours at the crack tip region [10], when the dominant mechanism of
energy dissipation comes from either viscous flow [2,11] or crack tip extension [6]. Other gelatin
experiments on fluid-driven crack propagation were inspired by magma propagation problems,
where buoyancy is the driving force [3,4,15]. To date, there has been little experimental attention
given to the time dependence of the crack growth and shape.

In this report, we study the dynamics of fluid-driven cracks using laboratory experiments
in gelatin. While there are many experiments using gelatin, which focused on buoyancy-driven
cracks [3,4,15], and some studies on the static shape of penny-shaped cracks where a high fluid
pressure is the driving force for crack propagation [14,16], we investigate the time evolution of
the shape of fluid-driven cracks. Our experimental observations exhibit good agreement with the
predictions of Spence & Sharp [11].

2. Fluid-driven cracks in an elastic matrix

(a) Experimental methods and observations
To study an idealized model for hydraulic fracturing, we injected fluid at a constant flow rate Q
into an elastic material and studied the propagation of a single crack generated by the invasion
of the fracturing liquid. We chose gelatin as the elastic material since it is commonly used in the
geosciences [3,4,13,15,17,18] because it mimics the elastic and brittle properties of rocks. Also,
gelatin is transparent, which allows detailed imaging.

We prepared a reservoir of solid gelatin (150 × 150 × 113 mm), as shown in figure 1. Young’s
modulus was varied by changing the concentration of the gelatin powder (Gelatin type A;
ThermoFisher Scientific, USA) and measured via indentation tests [19], with values ranging from
95 ± 9.5 kPa to 275 ± 27.5 kPa. A syringe filled with the fracturing liquid was connected to a
needle with one end placed inside the gelatin. The liquid injection rate was set by the syringe
pump (PhD Ultra; Harvard Apparatus). Different types of liquids and their properties are listed
in §2c. Two Nikon D5100 cameras (1280 × 720 pixels, frame rate = 24 fps) were placed on the top
and the side to record the three-dimensional shape of the crack, with the camera configuration
shown in figure 1.

The typical features of a fluid-driven crack are shown in figure 2. The propagation of the
liquid (dyed) can be observed clearly through the transparent gelatin. As the fracturing liquid was

 on October 27, 2015http://rspa.royalsocietypublishing.org/Downloaded from 

http://rspa.royalsocietypublishing.org/


3

rspa.royalsocietypublishing.org
Proc.R.Soc.A471:20150255

...................................................

fracturing
liquid

solid gelatin

101.6 mm55 mm

camera 
(top view)

constant 
flow rate Q

needle 
(I.R. 1.08 mm)

113 mm

camera 
(side view)

150 mm

Figure 1. Schematic diagram of the experimental set-up. Fracturing liquid was injected with a constant flow rate Q into an
elastic gelatin reservoir. The flow forced fracturing liquid to move forward and eventually fractured the gelatin. I.R. represents
inner radius. (Online version in colour.)

(a) (i)
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(ii) (iii) (iv)
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Figure 2. Time evolution of the fluid-driven crack geometry from (a) the side view and (b) the top view. As the fracturing
liquid (silicone oil of viscosity 1020 mPa · s, dyed) was injected into gelatin with a constant flow rate (Q= 10 ml min−1), a
penny-shaped crack was created and propagated radially along a plane. (Online version in colour.)

injected into the gelatin reservoir, the liquid propagated radially along a disc-like crack. We used
silicone oils as the fracturing liquid, which is impermeable with the gelatin. The orientation of the
fracture is usually perpendicular to the needle. The disc-like crack is referred to as a penny-shaped
crack in the previous theoretical studies [5,9], which will be discussed in the next section.

(b) Summary of scaling arguments for a fluid-driven crack
Theory and scaling arguments for a fluid-driven crack have been presented by Spence & Sharp
[11]. They considered the problem of fluid injection from a point source into an unbounded linear
elastic medium. A crack is initiated in the elastic medium and the shape of the axisymmetric crack
is sketched in figure 3. With a constant injection flow rate Q, the crack of radius R(t) propagates in
a plane and elastically deforms in the direction perpendicular to the plane. The two main physical
mechanisms considered here are (i) the elastic deformation of a crack and (ii) the laminar flow
driven by the radial pressure gradient in a narrow crack, with maximum half-width W � R, where
lubrication theory is applicable.
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Figure 3. Schematic diagram of a penny-shaped crack. The fluid is injected at a volumetric flow rate Q, the flow along the crack
is indicated, and the growing crack radius R(t) and half maximum thicknessW(t) are shown. (Online version in colour.)

Table 1. A summary of the scaling arguments for the time dependence of the crack radius, crack thickness and fluid pressure.

property scaling arguments

crack radius R≈
(

Q
4π

)1/3
(

E
6μ
(
1 − σ 2

)
)1/9

t4/9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

crack thickness W ≈
(

Q
4π

)1/3
(

E
6μ
(
1 − σ 2

)
)−2/9

t1/9

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fluid pressure p≈ E
2
(
1 − σ 2

)
(

E
6μ
(
1 − σ 2

)
)−1/3

t−1/3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The order of magnitude of terms in the governing equations for a fluid-driven crack in an
elastic matrix of zero toughness [11] (equations (A 1), (A 3) and (A 4) in appendix A) can be
written as

p ≈ W
R

E
2(1 − σ 2)

,
W
t

≈ 1
3µ

W3p
R2 and 4πWR2 ≈ Qt, (2.1a,b,c)

where σ is Poisson’s ratio, E is Young’s modulus, p is the elastic pressure applied on the crack
surface, and R(t) and W(t) are, respectively, the crack radius and half maximum crack thickness.
With E, σ , μ and Q as fixed parameters in one experiment and three equations (2.1a,b,c), we seek
the approximate time dependence of the three dependent variables (p, W, R). A summary of the
scaling arguments is presented in table 1, which will be used to rescale our experimental data in
the next section.

(c) Experimental results
We measured the crack radius R(t) as a function of time t for different fracturing liquid viscosities
μ, gelatin Young’s moduli E and injection flow rates Q. The plot of R versus t is shown in figure 4a.
Each individual dataset appears nearly linear on the log–log graph, with approximately the same
slope, but offset in position.

We next compare our results with the scaling arguments of §2b, which neglect the influence
of matrix toughness. The relative importance of toughness-related stresses �pf relative to viscous
stresses �pv, based on the scaling arguments, is presented in appendix B. For the experiments
reported here, �pf /�pv < 1, as we next show, the data can be explained with the use of viscosity-
dominated scaling arguments.

We now rescale the radius based on the scaling law for R as shown in table 1. We observe
that the curves collapse at the longer times, as shown in figure 4b. The black line is fitted from
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Figure 4. (a) Dependence of the crack radius R on time t for different fracturing liquid viscositiesμ, gelatin Young’s moduli E
and injection flow rates Q. The origin for time is chosen to be the moment when the liquid is injected into the gelatin. (b) The
rescaled crack radius versus time. The dark line with a pre-factor k = 0.62 ± 0.14 and exponentα = 0.48 ± 0.04, obtained
fromfitting the latedynamics (andaveragingover all thedatasets shown), agreeswith the scaling lawexpected forR(t) (table 1).
Errors have been estimated based on all measurement uncertainties and property values. (Online version in colour.)

Table 2. Silicone oils (Sigma-Aldrich, USA) of different viscosities are used as the fracturing liquids in our experiments.
The viscosities were measured using a rheometer (Physica MCR 301).

fluid type viscosity (at 23◦C)
silicone oil 1 10 500 ± 20 mPa · s

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

silicone oil 2 1020 ± 5 mPa · s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

silicone oil 3 5220 ± 5 mPa · s
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

data points in the late time periods, with an averaged pre-factor k = 0.62 ± 0.14 and exponent α =
0.48 ± 0.04, which agrees with the 4

9 power law shown in table 1. All of the results show similar
quantitative trends at long times. The error bars are estimated according to the measurement
uncertainties, such as Young’s modulus (±10%), viscosity (typical values given in table 2), crack
radius (±0.66 mm) and time (±5 s). Errors in time appear when determining t = 0 at which the
liquid emerges at the needle tip. A representative value for the effective Reynolds number of
fluid flow in the crack can be estimated: when silicone oil (ρ ≈ 980 kg m−3, μ ≈ 1 Pa · s) is injected
into a gelatin of Young’s modulus E ≈ 119 kPa at flow rate Q = 60 ml min−1, a penny-shaped crack
is generated with half thickness W ≈ 1.18 mm and radius R ≈ 20.1 mm at t ≈ 6 s (half way through
the experiment). Then, Reeff = ρU(2W)2/(μR) = ρQW/(πR2μ) ≈ 9.1 × 10−4.

We observe slight spreading in the rescaled data in figure 4b, which is likely to be due to minor
effects that were not considered in the model, for example the finite size of the gelatin matrix. Also,
the early time dynamics and variability can be other reasons for the small variations illustrated in
figure 4.

3. Crack thickness measurements
We have observed penny-shaped fluid-driven cracks in our gelatin experimental system. The
simplicity of such a geometry also allows us to conduct experiments to measure the crack shape
as a function of time.
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Figure5. (a) An illustrationof themethod tomeasure the thickness of the crack. The fracturing liquidwasdyedwithfluorescein,
which absorbs the background uniform blue light (intensity I0). A camera facing the background light captures the transmitted
light (intensity I1), which is not absorbed by fluorescein. (b) Calibration of dyed fluid shown with thickness, d, versus the
normalized blue light intensity, I1/I0. The circles represent the experimental data and the dashed curve is the fitting curve
(equation (C 1)) we used in our data analysis. Note that the experimental data points near d = 0 are at the boundary of the
wedge and are not reliable. (Online version in colour.)

(a) Methods
We developed an imaging technique to measure the thickness of a crack based on a decrease in
the background light intensity as it passes through the dye-filled crack. A similar method has
been used in previous studies [14,16].

We used a background blue light source with a uniform light intensity (figure 5a). The
fracturing liquid is mixed with fluorescent dye (30 µl fluorescent yellow 131 SC + 10 ml tap water),
which absorbs blue light and emits light at a longer wavelength. For a specific type of fluid, the
amount of absorption is related to the thickness of the fluid through which the light passes. We
recorded the intensity distribution of blue light behind the fluid-filled crack I1 using a Nikon
D5100 camera (4928 × 3264 pixels). The thicker the crack, the more blue light is absorbed by
fluorescent dye particles, and the weaker the output light intensity captured by the camera. A
separate calibration experiment was performed to obtain the relation between the thickness of the
liquid, d, and the normalized blue light intensity, I1/I0, as shown in figure 5b. The crack thickness
in a given experiment follows by identifying d = 2w(r, t). A detailed description of the calibration
method is provided in appendix C.

(b) Time evolution of crack thickness profile
The crack thickness 2w(r, t) is measured as a function of both position and time, as shown in
figure 6a. The thickness measurements were taken every 3 s. w(r, t) is obtained by dividing the
measured crack thickness by a factor of 2, assuming the shape of the crack is symmetric about the
z-axis. The t = 0 curve, when there is no fluid in the crack, is a horizontal line in figure 6a. When
fluid injection starts, both the crack radius and thickness increased with time. We note that in a
small region at the centre of the crack (of width 7.8 mm) light was blocked due to the needle used
for fluid injection. There are data points at each pixel across the crack radius except in this central
region (figure 6).

(c) Rescaled crack thickness profiles
According to the scaling arguments for crack radius and thickness, shown in table 1, we rescaled
the crack shapes. These measurements thus serve as an additional means for assessing details of
the fluid–elastic theory. As shown in figure 6b, the rescaled crack thickness profiles collapsed after
approximately 12 s for this particular experiment.
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Figure 6. (a) Time evolution of the crack thickness profile w(r, t), measured across a fixed cross-section. w is half of the
measured crack thickness, assuming the crack is symmetric across the z-axis. The data points of the same darkness represent the
measured thickness at each pixel along the r-axis. The time difference between curves is�t = 3 s. The time t = 0 is defined as
themomentwhen liquid is injected into gelatin. Experimental parameters:μ = 1020 mPa · s, E = 457 kPa,Q= 15 ml min−1.
(b) The rescaled crack thickness profile based on the scaling laws (table 1). (Online version in colour.)

4. Concluding remarks
In this paper, we experimentally studied the propagation of a fluid-driven crack in an elastic
matrix of negligible toughness. We injected fluid into solid gelatin and recorded the growth of
the crack radius and the shape of the crack. We investigated the influence of the injection flow
rate Q, fluid viscosity μ and gelatin Young’s modulus E. The crack radius R shows a 4

9 power-law
dependence on time, and the experimental data for different parameters (Q, μ, E) collapse based
on the viscously dominated scaling arguments of Spence & Sharp [11]. The time evolution of the
crack shape is also measured, and the dimensionless crack profiles collapse at late times.

Our experimental system is shown to be robust and provides a useful laboratory model for
further studies of fluid-driven cracks, such as poroelastic effects which have been neglected in
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our experiment. In addition, the backflow as the elastic matrix relaxes is another area for future
research using the experimental system.
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Appendix A. Governing equations for fluid-driven cracks in an elastic matrix
This section provides a summary of a model developed by Spence & Sharp [11] for fluid-driven
cracks in an elastic medium when material toughness is negligible (figure 3).

(a) Elastic pressure
Across the surface of the crack, the shear traction is assumed to be negligible. The fluid stress
applied on the wall of the crack is in the normal direction to the surface, which balances the
elastic stress due to deformation. The elastic pressure p(r, t), regarded as the excess pressure above
the hydrostatic value, is obtained as a function of the crack shape, which, for an axisymmetric
disc-shaped crack of radius R(t) and thickness 2w(r, t), is

p(r, t) = − E
2(1 − σ 2)

∫R(t)

0
M
( r

s

) ∂w(s, t)
∂s

1
s

ds, (A 1)

where M is a kernel for the elastic response, σ is Poisson’s ratio and E is Young’s modulus. A
detailed derivation and the expression for the kernel function M based on classical linear elasticity
theory can be found in Sneddon [20], Spence [21] and Spence & Sharp [11].

(b) Laminar flow in the crack
The lubrication approximation is applicable for fluid flow in a narrow crack. Cylindrical
coordinates (r, z) are used with z transverse to the radial direction of crack propagation. The
pressure p(r, t) is assumed uniform across the crack width, so that the pressure-driven flow has a
velocity profile ur(r, z, t):

ur(r, z, t) = 1
2μ

∂p
∂r

(z2 − w2(r, t)). (A 2)

Substituting the vertically averaged velocity into the continuity equation, we obtain the
Reynolds equation for the crack width 2w(r, t):

∂w(r, t)
∂t

= 1
3μr

∂

∂r

(
rw3(r, t)

∂p
∂r

)
. (A 3)

The physical picture embedded in this equation is that the crack is opened up by the pressure
from an incompressible fluid flow. In addition, the global conservation of fluid volume gives

4π

∫R(t)

0
rw(r, t) dr = Qt, (A 4)

for constant fluid injection at flow rate Q. In the main text, §2b, we summarize the scaling
arguments based on equations (A 1), (A 3) and (A 4) for the time dependence of the crack radius,
crack thickness and fluid pressure, respectively.
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Table 3. Coefficients in equation (C 1).

coefficients C0 C1 C2 C3 C4
units — mm−1 mm−2 mm−3 mm−4

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

values 1.014 −0.2084 0.0026 0.0066 0.0006
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix B. Toughness-related stress and viscous stress
In this section, we estimate the relative importance of toughness-related stress �pf to viscous
stress �pv. Considering a penny-shaped crack (mode I), the stress intensity factor KI is related to
the elastic pressure p(r, t) via [6,9]

KI = 2√
πR

∫R(t)

0

p(r, t)√
R2 − r2

r dr. (B 1)

Crack propagation occurs once KI = KIC [1,2,9], where KIC =√
2γsE is a material property called

the fracture toughness [4,15], and γs is the surface energy of the elastic matrix. Thus, an estimate
of the required elastic pressure for crack propagation is �pf ≈ KIC/

√
R ≈√

γsE/R. In addition, the
viscous stress �pv can be estimated using Reynolds equation (A 3) and the conservation of fluid
volume (A 4): �pv ≈ μQ/W3.

Thus, the relative importance of toughness-related stresses to viscous stresses is �pf /�pv ≈
γ

1/2
s E1/2W3/(R1/2μQ). After substituting into the scaling laws for W and R presented in table 1,

we obtain
�pf

�pv
≈ (1 − σ 2)13/18γ

1/2
s t1/9

μ5/18Q1/6E2/9 . (B 2)

The ratio represented by equation (B 2) was identified in a previous theoretical study including
toughness effects [9].

For gelatin, we use σ = 0.5 and γs ≈ 1 J m−2, which was found experimentally by Menand &
Tait [4]. For different experimental parameter sets presented in figure 4, we find that �pf /�pv

ranges from 0.62 to 0.98 (half way through an experiment). This ratio indicates that the effect of
toughness is smaller than the viscous effects, which is consistent with our data collapsing for a
wide range of viscosities based on the viscosity-dominated scaling laws.

Appendix C. Calibration method for crack thickness measurements
To find the relationship between the transmitted blue light intensity and the thickness of a
fluid-filled crack, a calibration experiment was conducted. We made a wedge with a linearly
increasing thickness and filled the wedge with dye-laden fluid (figure 5b). Then, we measured
the distribution of blue light intensity after light passes through the fluid-filled wedge, which is a
function of thickness, d. Note that gelatin particles also absorb light. Thus, when performing the
calibration, we have to place the wedge in the middle of the gelatin reservoir to make sure that the
absorption from gelatin particles is taken into account. The decrease in blue light intensity due
to absorption by gelatin particles can be eliminated via normalizing the blue light intensity, I1,
that passed through the fluid-filled crack by the uniform blue light intensity, I0, that only travels
through gelatin to the camera.

Thus, an empirical curve of the decrease of blue light intensity, I1/I0, due to fluorescence
absorption versus wedge thickness, d, is obtained, as was shown in figure 5b. The experimental
data were fitted by a polynomial curve with the coefficients given in table 3,

I1

I0
= C0 + C1d + C2d2 + C3d3 + C4d4. (C 1)
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Given the calibration curve (equation (C 1)), we can transform the distribution of measured
blue light intensity to the thickness of the fluid-filled crack, i.e. 2w = d. The results of our time-
dependent measurements were shown in figure 6a. Note that, for a certain fluid thickness d, light
travels through gelatin for a slightly different distance between the calibration experiment and the
fluid-driven crack experiment. However, since the change in the attenuation of light due to the
change in gelatin path length is small compared with the attenuation of light due to the passage
through the liquid, the small variation of travel distance in gelatin is negligible.
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