
1. Introduction
The rate of flow and disintegration of ice shelves may depend critically on the opening of crevasses cut-
ting the shelf (Banwell et  al.,  2013; Clerc et  al.,  2019; Lai et  al.,  2020; Robel & Banwell,  2019; Scambos 
et al., 2009). Ice shelves can retard the flow of adjacent grounded ice sheets (Fürst et al., 2016; Schoof, 2007). 
Therefore, crevassing processes can affect the rate of sea level rise on a warming Earth (e.g., DeConto & Pol-
lard, 2016; Pollard et al., 2015). Water-filled basal crevasses may cut through much of a floating ice layer and 
so may more strongly affect large-scale shelf deformation than the relatively shallow opening dry surface 
crevasses (e.g., Bassis & Ma, 2015). Previous analyses of crevasse opening (e.g., Weertman, 1973) assumed 
no deflection of the surface so that a semi-analytic dislocation approach could be used, but advances in 
numerical methods make possible a more realistic treatment of crevasse opening.

Basal crevasses are water-filled tensile cracks. Since floating ice shelves should be under horizontal tension 
those cracks should be approximately vertical and radar images confirm this prediction (Figure S1; Luck-
man et al., 2012; McGrath, 2012). The opening of such cracks reduces the tension in the base of the ice layer 
and increases tension above the crack (Weertman, 1973). The rate of ice flow depends non-linearly on the 
applied stress (e.g., Glen, 1952), with a given increase in stress difference producing a correspondingly large 
increase in flow rate. Thus, the increase of stress in the shallow part of an ice shelf due to crevasse opening 
could greatly increase the rate of ice flow above the crevasse, as shown by Bassis and Ma (2015).

Previous analyses of basal crevasse opening do not fully treat the bending of a floating, finite thickness 
layer and so may underestimate the height and width of a basal crevasse. The classical treatment of cre-
vasse opening in an elastic half-space (e.g., Weertman, 1973) predicts such a narrow opening that Weert-
man (1980) considered that crevasses would largely freeze for all but the thickest ice shelves.

In this paper, we analyze the opening of a water-filled basal crevasse in a floating elastic ice layer of uni-
form thickness (Figure 1). The numerical model boundary conditions only differ from those assumed by 
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Weertman (1973) in that the ice layer is taken to have a finite thickness. We then show derive an approx-
imate thin plate analytic description of basal crevasse opening that shows how flexure explains the addi-
tional crevasse width. Before describing our treatment of basal crevasse opening for a floating ice layer we 
describe two classical treatments of crevasse opening.

1.1. Previous Analyses of Crevasse Opening

The height of the crevasse opening was discussed by Nye (1955) under the assumption that the opening 
does not affect stresses in ice. He argues that the tip of the crevasse is at the depth where the pressure Pf of 
fluid in the crevasse equals the horizontal full stress  xx there. Nye (1955) assumed that the vertical stress 
equals the lithostatic stress in the column of ice so that the full horizontal stress is:

     Δxx i xxz gz (1)

where Δ xx is an applied tensional stress and z is the depth below the surface of a horizontally uniform ice 
layer, i is ice density, and g is the acceleration of gravity. For an ice layer of thickness h floating on the water 
density w the fluid pressure in a basal crevasse is:

        ,f i wP z gh g h z for h z d (2)
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Figure 1. Top panel schematically illustrates how basal crevasse opening to a height hBC could produce layer bending. 
The ice layer is subject to an extensional force  Δ Δx xxF h  applied far from the site of the crevasse opening. The 
pressure of water in the crevasse produces a bending moment M that increases the maximum width wMAX of the 
crevasse. The bottom two panels show results of numerical determinations of horizontal deviatoric stress   xxd  during 
basal crevasse opening for the radiolabeled values of the vertically uniform extensional stress ( Δ xx) applied to the right 
side of the model domain (see text). For the “full floating stress” case the extensional stress magnitude is described in 
the text. For the lower plot, the extensional stress is assumed to be reduced by half due to buttressing at the sides of the 
ice shelf. In both cases, Young’s modulus was set to 109 Pa. The horizontal opening of the respective model crevasses is 
shown to the left of the stress plots.
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where d is the depth to the water below the top of a floating ice sheet of thickness h, as pictured in Figure S2, 
and is:

  



 w i

w
d h (3)

where w is the density of water. With this pressure in the crevasse, Nye’s assumption implies that that the 
height of a basal crevasse is:
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Nye (1955) noted that the assumption that crevasse opening does not change the horizontal stress in the 
ice should only hold if crevasses are very closely spaced. He suggested that the opening of a single crevasse 
should affect stresses at the crack tip so that estimating the crevasse height would require a more involved 
analysis.

The challenge of analyzing the opening of a single crevasse in an ice layer was taken up by Weertman (1973) 
who simulated the effect of the crack opening using a series of dislocations in an elastic half-space. He fol-
lowed Nye (1955) in assuming that the position of the crack tip would be the place where the pressure in 
the crack equaled the horizontal stress in the ice. The Weertman (1973) solution predicts that both surface 
and basal crevasses would open much farther than predicted by Nye (1955). For a basal crevasse height that 
is small compared to the ice layer thickness he found a height:

 
  

 
1.05 1.65

2
Weertman Nye Nye
B B Bh h h (5)

which is the same as crevasse height in an infinite elastic half-space predicted from linear elastic fracture 
mechanics (LEFM; van der Veen, 1998) with zero fracture toughness (see Figure S3).

Using a standard estimate of the maximum horizontal tension in a floating layer, Weertman (1973) estimat-
ed the maximum height of a crevasse opening for the case of a crevasse far from the edge of such a layer. 
His analysis computed the force exerted by water on the side of the layer and because that is insufficient 
to support the load of the ice, the layer will be under tension. The maximum difference between the water 
pressure and the lithostatic stress in the ice occurs at depth d below the surface of the ice (Figure S2) and is:

   


  Δ i
MAX i w i

w
P gd gh (6)

Far from the edge of the ice layer, this extensional force should result in a uniform reduction in the horizon-
tal stress  xx relative to the vertical stress  zz. The horizontal stress is then given by Equation 1 with

    


  
1Δ Δ
2

i
xx xxMAX w i

w
gh (7)

We term this the maximum floating stress difference since it could be reduced by any “buttressing stresses” at 
the sides of an ice shelf. Using this value of stress difference and that   31000 /w kg m  and   3900 /i kg m  

in Equation 4, Nye (1955) would predict  0.45Nye
Bh h while Weetman’s (1973) analysis (Equation 5) pre-

dicts a basal crevasse height of 0.74 h.

The width of a crevasse can be precisely estimated for a crack opening in a half-space. For the extensional 
stress in a freely floating 300 m thick ice layer with the densities assumed above and with typical laborato-
ry-measured elastic properties for ice (Young’s modulus of ∼1010 Pa and a Poisson’s ratio of 0.25; Gammon 
et al., 1983) the maximum predicted basal crevasse width would be ∼0.5 cm (Weertman, 1973). As with 
magma freezing in a dike, the time to freeze should scale with the inverse square of the crevasse width (e.g., 
Turcotte & Schubert, 2014). As noted by Weertman (1980) accounting for the latent heat of solidification 
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such a narrow crack could freeze on a time scale of minutes if it intrudes ice a few degrees below zero. Thus, 
water might freeze in a crack after propagating only a short distance.

Weertman (1980) assumed that a basal crevasse would only stay open if it would not freeze in the time 
required for enough ductile flow of the ice above the crevasses to significantly widen the crevasse. For typ-
ical ice rheologic parameters, he estimated that only basal crevasses in a freely floating layer thicker than 
∼1,000 m would be wide enough to stay open and not freeze completely. This seems at odds with radar 
observations that detect basal crevasses under much thinner ice shelves (Luckman, 2012; McGrath, 2012)

2. Basal Crevasse Opening for a Floating Ice Layer of Finite Thickness
Weertman (1973) noted that effects related to the free surface of a floating ice layer not treated in his anal-
ysis could affect basal crevasse opening. Thus, we performed a series of numerical simulations using much 
the same boundary conditions as Weertman (1973) except that the floating layer was taken to have a free 
surface. As in mentioned inprevious studies of surface crevasses opening (Qin et al., 2007) and magma filled 
dike opening (Bialas et al., 2010; Qin & Buck, 2008), the numerical code FLAC (Cundall, 1989) was used to 
compute the stresses produced by the opening of a crevasse in a 2D floating elastic layer.

An elastic layer at least 12 times wider than its uniform height h was loaded on the right side with horizontal 
stress given by Equation 1 with particular values of the horizontal stress difference Δ xx  (Figure 1). The 
layer surface was stress-free and the other three sides were taken to be shear stress-free. The base of the layer 
was treated as a Winkler foundation simulating floating on an inviscid fluid of density equal to the density 
of water. As above, the water density was set to   31,000 /w kg m  and the ice density was   3900 / .i kg m  
For all cases, the Poisson’s ratio was set to 0.25.

Since the opening of a vertical crevasse should be symmetric only one side was treated numerically. The 
left side of the model domain was assumed to be the site of the basal crevasse opening. From the surface 
to the depth of the assumed top of the crevasse, zB (Figure S2), the horizontal displacement was set to zero. 
Between z = zB and z = h , the horizontal stress was set to the value of the water pressure given by Equa-
tion 2. The depth from the top of the crevasse was varied until the horizontal stress at the top of the layer 
approximately equaled the water pressure at that depth. If the trial value of zB was too large (small) the 
horizontal stress was greater (less) than the water pressure (using the geologic convention that compression 
is positive). The size of the square elements used was decreased until the effect on crevasse height was less 
than a few percent. The finest scale models were done with 60 elements vertically and 720 horizontally.

2.1. Numerical Results

Three parameters were varied in a series of model cases: the layer thickness h, Young’s modulus E, and the 
applied extensional stress difference Δ xx. The stress difference was varied between zero and the maximum 
value for a freely floating layer given by Equation 7. Figure 2a shows the computed height of basal crevasses 
as a function of the applied stress ratio  Δ / Δ .xx xxMAX  For these cases the ice layer thickness was 300 m 
and Young’s modulus E was set to 109 Pa. Also, shown are the predictions of the crevasse heights for the 
Nye (1955) and Weertman (1973) approximations. For very small values of the stress ratio, the numerical 
results equal the Weertman (1973) results but they diverge significantly  Δ / Δ 0.5xx xxMAX  .

For the maximum floating stress, the non-dimensional basal crevasse height (hB/h) for the finite thickness 
layer is ∼0.9 compared to the value predicted for a half-space of ∼0.74 given by Weertman (1973). Increasing 
the layer depth from 100 to 1,000 m decreases the maximum dimensional basal crevasse height (hB/h) by a 
few percent. Likewise, increasing Young’s modulus by a factor of 10 increases the maximum predicted basal 
crevasse height by several percent.

The width of the bottom of the basal crevasses as a function of the stress ratio is shown in Figure 2b. For 
small values of the applied stress, the numerical widths are very close to the half-space solution. However, 
for large values of the applied stress, the width for the finite layer thickness calculations is up to 10 times 
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larger than for the half-space cases for a reasonable value of Young’s modulus. Unlike for the crevasse 
height, the width depends strongly on Young’s modulus as can be seen in Figure 3.

The pattern of stress changes for the finite thickness layer is fundamentally different depending on the 
applied stress. Figure 1 shows horizontal deviatoric stresses          

/ 2xxd xx xx zz  for two of the 

numerical cases after basal crevasse opening. In both cases, the region laterally adjacent to the open cre-
vasse shows a marked increase in the horizontal stress (i.e., the stresses become more compressive). Had 
the crack been opening in an elastic half-space the region of significant stress change would be roughly 
twice as wide as the height of the crevasse (e.g., Weertman, 1980). This is essentially, what is seen in the 
case   Δ / Δ 0.5xx xxMAX  where the crevasse opens to a height of ∼0.35 h. When the applied stress ratio 
was equal to 1 the region of stress changes are many times wider than the crevasse height. As shown in 
Figures 2b and 3 the crevasse width was also many times larger than expected for a crack in a half-space. 
Crack opening as a function of depth is plotted in Figure 1.

2.2. Analytic Model of Basal Crevasse Opening for a Freely Floating Ice Shelf

The numerical model shows that the width of the crevasse opening for a finite thickness, freelyfloating 
elastic layer (   Δ / Δ 1xx xxMAX ) can be many times larger than the opening under the same stress applied 
to a half-space (Figure 2). To elucidate the reason for this great difference in predicted width we consider a 
simple model of flexure in response to stress changes on crevasse opening. Many authors have noted that 
the existence of a free end of an ice shelf should result in flexure of that layer (Logan et al., 2013; MacAyael 
and Sergienko, 2013; MacAyal et al., 2015; Reeh, 1968; Sandwell et al., 2004; Schmeltz et al., 2002). Here, we 
apply thin elastic plate flexure theory (e.g.,Watts, 2001) to try to estimate the extra opening of a basal cre-
vasse due to the bending of a floating ice layer. The only case considered is where the applied stress equals 
the maximum value due to free floatation as given by Equation 7.

As with the numerical model described above, a basal crevasse is assumed to open far from the shelf edge 
where the initial, pre-opening, horizontal stress distribution with depth is described by Equation 1. Tensile 
fracturing allows water to apply hydrostatic pressure to the sides of the opening crevasse. At the base of the 
sheet, the horizontal stress will then equal the vertical stress so the horizontal stress there would increase 
by 

1 Δ
2 MAXP on the bottom crevasse opening.

Consistent with our numerical results for the case of   Δ / Δ 1.0xx xxMAX a basal crevasse is assumed to 
open from the base of the ice shelf to a depth d from the surface, where d is the freeboard of the ice shelf 
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Figure 2. (a) Results of calculated basal crevasse height versus non-dimensional extensional stress from our 2D 
numerical treatment of a floating elastic ice layer (blue) for a Poisson’s ratio of 0.25 and the indicated ice layer thickness 
and Young’s modulus. Also shown are estimates based on an elastic half-space approximation (Weertman, 1973, red) or 
for an infinite number of laterally adjacent crevasses (Nye, 1955, green). (b) Predicted maximum half-width of the basal 
crevasses for the same numerical cases as in (a) and for the elastic half-space solution with the same elastic properties 
as in (a) All results assume an ice density of 900 kg/m3, a water density of 1,000 kg/m3.
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given by Equation 3. The total horizontal stress in the layer before the opening of a crevasse  0
xx is given by 

Equation 1 with  Δ Δxx xxMAX. After the crevasse opens the new horizontal stress  1
xx from depth d to the 

base of the ice sheet the horizontal stress changes to equal the water pressure    wg z d . Continuity 
of horizontal stress is required across the top of the crevasse at depth z = d. Also, bending should result 
in no change in the average horizontal stress in the unbroken region above the open crevasse (e.g., Bodine 
et al., 1981). The simplest way to meet these requirements is to have  1

xx equal zero from the surface to z = d. 
Then the change in horizontal stress after the opening of the basal crevasse is

 

 

    


     



1 0

1 0

1( ) ( ) ( )
2

1( ) ( ) ( ) .
2

xx xx MAX

xx xx MAX

zz z P for z d
d

z dz z P for d z h
h d

 (8)
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Figure 3. Comparison between analytic (lines) and numerical (colored dots) estimates of the maximum half-width 
of a basal crevasse for 13 numerical cases with different values of the layer thickness and Young’s modulus The non-
dimensional extensional stress was taken to be 1 (   . .Δ / Δ 1xx xxMAXi e )., meaning the stress equaled the full floating 
stress. (a) Shows the log of the half width versus log of the layer thickness for four different Young’s moduli. (b) Shows 
that the rescaled crevasse width and rescaled layer thickness for four different Young’s moduli collapse onto a universal 
curve, and exhibit good agreements with the analytical prediction (Equation 12) without any fitting parameters. The 
slope of the black line is ¾. (Fixed parameters for all points:      3 30.25, 1000 / , 900 / ,w ikg m kg m Te h).
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Figure S4 shows the distribution of initial stress in the layer and the change in stress after the opening of a 
crevasse. This distribution of stress changes implies a moment applied to the vertical edge of the crevasse 
and the region above the crevasses tip that can be expressed as:

            
1 0 2

0

Δ 2
12

h
MAX

xx xx
PM z z zdz h dh (9)

Assuming    0.9i
w

 means that  10
hd  so that  2Δ

15
MAXPM h . The moment should cause bending of the 

ice adjacent to the site of the basal crevasse. Thin plate flexure theory is a useful way to estimate the ampli-
tude and wavelength of the vertical displacement of the ice layers. Though the ice is not completely cut by 
the basal crevasse, assuming the plate is broken there allows the derivation of an analytic description of the 
displacement. For a semi-infinite broken thin elastic plate, the vertical displacement (positive down) above 
the basal crevasse due to a moment M applied at x = 0 is:

 
0 2

2

w

Me
g (10)

where α is the flexure parameter defined below. The crevasse half-width should approximately equal the 
slope of the surface at x = 0 (which can be shown to equal 


02e

) times the depth below the top of the cre-

vasse. Thus, the maximum full width of the basal crevasse is    max 04 /w e h d .

The results of the surface deflection and crevasses opening width strongly depend on the ratio α/h. The 
thickness h is relatively easy to measure for in the ice shelf, but the value of the flexure parameter is much 
harder to constrain. Thin elastic plate theory (Turcotte & Schubert,2014) implies that α is related to the 
effective elastic thickness, Te, of the layer as:

 
 


 

 
     

1
43

23 1 w

E Te
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where E is Young’s modulus and ν is Poisson’s ratio. Assuming that the layer bends in a purely elastic fash-
ion (with no yielding) then Te = h. With E = 1010 Pa, ν = 0.25 and for h = 300 m this gives α/h ∼ 6. Combin-
ing Equations 3, 6, 9, 10 and 11 yields
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To test our analytical model, the results of 13 numerical experiments with   Δ / Δ 1xx xxMAX  (i.e., a freely 
floating layer) of basal crevasse half-width as a function of layer thickness for a range of Young’s moduli 
and layer thicknesses are shown in Figure 3a. Four different Young’s modulus values are shown by the four 
curves. We then non-dimensionalize the axis of Figure 3a according to Equation 12 and show that the data 
for different Young’s modulus collapses (Figure 3b) onto the analytical solution (Equation 12) where Te = h. 
The collapse of dimensionless data on Figure 3b shows the excellent agreement between the numerical 
simulation and the analytical solution (Equation 12) for Young’s modulus varying across four orders of 
magnitudes.
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Note that the cases shown in Figure 3 consider Young’s moduli both lower and higher than measured or 
estimated values (Gammon et al., 1983; Nimmo, 2004). The computer time for obtaining a reliable (con-
verged) solution using our explicit numerical formulation is found to depend on flexural wavelength. For 
the lowest values of the Youngs modulus and so the shortest wavelengths the numerical calculations con-
verge in less than a CPU hour, while for cases with the highest values of E convergence can take a CPU day. 
Thus, we only did one numerical case with a very high value of Young’s modulus.

For brittle layers, like rock or ice, bending causes yielding that will make Te smaller than layer thickness h. 
Theory predicts that the Te should be a strong function of the curvature of a plate (e.g., Buck, 1988) and ge-
ologically realistic bending can result in the reduction of Te by an order of magnitude (Choi & Buck, 2012). 
Nimmo (2004) complied data on the flexing of ice shelves by tidal loads and concluded that brittle failure 
due to those loads reduces Te by ∼30%–50%. In our simulations, we did not allow brittle yielding and con-
sidered only the elastic behavior of an ice layer.

3. Discussion and Conclusions
The numerical study of basal crevasse opening in an elastic layer described here differs significantly from 
previous models that do not account for the finite thickness and free surface of a floating ice shelf. The 
height of the crevasse is more sensitive to the extensional stress in the layer than predicted by earlier studies. 
The new results predict that a basal crevasse can be an order of magnitude wider than predicted for earlier 
studies that consider a crack opening in an elastic half-space solution.

An analysis using the thin-layer approximation shows that the greatly increased width of basal crevasse 
opening for extensional stresses expected in a freely floating ice shelf (i.e., when buttressing stress is min-
imal) stress results from layer bending. The bending is driven by changes in the horizontal stresses along 
and above a newly opened crevasse. Analytic predictions of the width of the base of a basal crevasse closely 
match the predictions of the numerical model and show the same nonlinear dependence on the layer thick-
ness and Young’s modulus assumed for the ice.

The time to freeze a water-filled crevasse depends on the square of its width just as it does for magma solid-
ifying in a dike (e.g., Turcotte & Schubert, 2014). The new results suggest that a basal crevasse may take as 
much as 100 times as long to freeze as predicted by the classical analysis. Thus, a basal crevasse may be more 
likely to propagate through much of an ice shelf before freezing would arrest propagation. The wide crack 
may then stay open long enough for ductile flow of the region above the open crevasse to further widen 
the crack and so keep it open as envisioned by Weertman (1980). This would result in the kind of localized 
thinning of the ice above a crevasse discussed in previous studies (e.g., Bassis & Ma, 2015). We note that 
whether the ocean within basal crevasses under the ice shelves can freeze is an active area of research (e.g., 
the ICEFIN project). Here we focus on the widening of basal crevasse due to ice-shelf deformation that can 
contribute to the increase of freezing time.

The lateral confinement of ice shelves provides buttressing that can reduce the extensional stress experi-
enced by a region of an ice shelf. Lower values of the ratio of extensional stress to the maximum expected for 
a freely floating layer (e.g.,  Δ / Δxx xxMAX) can be thought of as representing stronger buttressing (Fürst 
et al., 2016). Near the edge of an ice shelf, this stress ratio should approach 1.0 and so the basal crevasses 
should be the tallest and widest. In areas where the sides of a flowing ice shelf are confined, so shear stresses 
reduce downstream extensional stresses, we expect that basal crevasses should be shorter (e.g., Jezek, 1984).

The present study implies that basal crevasses subject to free-floating stresses open significantly wider than 
estimated by previous studies. Higher-resolution models than those employed here will be needed to quan-
tify the precise level of extensional stress needed for the complete breaking of an ice layer, but it appears to 
be only slightly larger than the free-floating stress.

The numerical approach used here can easily be applied to cases where the viscous and brittle rheology of 
ice is included. Future work should consider the full 2D treatment of the development of a series of crevass-
es, including the thermal evolution of that system.
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Data Availability Statement
Figure S1 has been obtained from CReSIS (2020) Radar Depth Sounder, Lawrence, Kansas, USA. Digital 
Media. http://data.cresis.ku.edu/. The numerical code we used for these model runs can be found at https://
bitbucket.org/tan2/flac/src/default/.
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