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The dynamics of fluid-driven cracks in an elastic
matrix is studied experimentally. We report the crack
radius R(t) as a function of time, as well as the crack
shapes w(r, t) as a function of space and time. A
dimensionless parameter, the pressure ratio �pf/�pv,
is identified to gauge the relative importance between
the toughness (�pf) and viscous (�pv) effects. In
our previous paper (Lai et al. 2015 Proc. R. Soc.
A 471, 20150255. (doi:10.1098/rspa.2015.0255)), we
investigated the viscous limit experimentally when
the toughness-related stresses are negligible for the
crack propagation. In this paper, the experimental
parameters, i.e. Young’s modulus E of the gelatin,
viscosity μ of the fracturing liquid and the injection
flow rate Q, were chosen so that the viscous
effects in the flow are negligible compared with the
toughness effects, i.e. �pf/�pv � 1. In this limit, the
crack dynamics can be described by the toughness-
dominated scaling laws, which give the crack radius
R(t) ∝ t2/5 and the half maximum crack thickness
W(t) ∝ t1/5. The experimental results are in good
agreement with the predictions of the toughness
scaling laws: the experimental data for crack radius
R(t) for a wide range of parameters (E, μ, Q) collapse
after being rescaled by the toughness scaling laws,
and the rescaled crack shapes w(r, t) also collapse to
a dimensionless shape, which demonstrates the self-
similarity of the crack shape. The appropriate choice
of the viscous or toughness scaling laws is important
to accurately describe the crack dynamics.

This article is part of the themed issue ‘Energy and
the subsurface’.
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1. Introduction
The success of hydraulic fracturing for shale gas recovery, i.e. the injection of pressurized water
to fracture a shale reservoir and access the trapped natural gas, has motivated much research
interest in understanding the underlying mechanisms. Several competing forces involved in the
crack dynamics have been identified, such as elastic, viscous and toughness-related stresses [1–3].
The fracturing process of liquid intrusion into elastic solids has also been used to study magma
transport, in which the cracks are mainly driven by buoyancy due to the density difference
between the injected fluid and rock [4–6].

Hydraulic fractures have been extensively studied theoretically and numerically [2,3,7–10],
but experimental observations of the fracture geometry are relatively limited. A summary of
the previous experimental work is presented in table 1. Qualitative observations of hydraulic
fractures in laboratory experiments were reported by Hubbert & Willis [11]. Experiments were
also conducted to study the propagation of fractures, either in a cement block, or along the
interface between an acrylic block and a rubber block, as summarized in [18,19]. In some
experimental studies on magma-filled cracks, also referred to as buoyancy-driven cracks, gelatin
has been used to visualize the fracturing process in an elastic material due to its transparent,
elastic and brittle properties [12–14]. Fewer quantitative experiments on the detailed fracture
geometry have been reported for hydraulic fractures. Shape measurements of penny-shaped
crack tips were performed at a particular time by Bunger [20]. We focus on the experimental
developments to obtain the time-dependent information for the fluid-driven crack radius and
crack shape in a gelatin matrix, and investigate the dynamics of the crack propagation process in
this paper.

Two possible scaling laws can be obtained considering different force balances. When a crack
in an elastic solid is created due to the intrusion of a fluid, the fluid pressure balances the elastic
stresses at the crack surface, which serves as the driving force for the propagation of hydraulic
fractures. The resisting forces during crack propagation include the viscous forces of the flow
in the crack, and the forces required to open new crack surfaces in the elastic solid [21]. The
viscous-dominated scaling is obtained from the balance between the elastic stresses and the
viscous stresses [2], whereas a balance between elastic- and toughness-related stresses gives
the toughness-dominated scaling [8,21].

In our previous work, we reported experimental measurement of the time evolution of the
crack profile shapes in the viscous-dominated regime [17]. In this paper, we provide the time
evolution of crack profile shapes in the toughness-dominated regime, which further allows us
to compare the experimental results in the viscous and toughness-dominated regimes. We also
identify a dimensionless parameter, the pressure ratio �pf/�pv, to gauge the relative importance
between the toughness and viscous stresses. The importance of the pressure ratio is to determine
the proper scaling laws to predict the crack dynamics. For example, the crack size estimated by
the toughness scaling law will be an order of magnitude greater than that estimated by the viscous
scaling law, if the pressure ratio �pf/�pv ≈ 0.03, as discussed in an example in §5.

The paper is structured as follows: §2 provides a summary of both the viscous and toughness
scaling arguments, and the derivation of a dimensionless parameter, the pressure ratio �pf/�pv

that gauges the viscous and toughness effects. Section 3 explains the experimental method
designed to study fluid-driven cracks in the toughness-dominated regime. The experimental
results are presented in both dimensional and dimensionless forms in §4. A comparison of
experiments in both the viscous- and toughness-dominated regimes, and the significance of
identifying the proper regime of a fluid-driven propagating crack are discussed in §5. Concluding
remarks are provided in §6.

2. Scaling arguments for fluid-driven cracks
We summarize in this section the scaling arguments for fluid-driven cracks in two asymptotic
regimes: viscous and toughness regimes [2,3,8]. We identify a dimensionless parameter, the
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Table 1. Summary of previous experimental studies of fluid-driven and buoyancy-driven cracks. We listed the physical
mechanisms during crack propagation for each study.B represents the buoyancy force,E represents elastic forces,T indicates
the resistance for crack propagation comes from opening the crack tip, whileV indicates that the resistance is from viscous drag
of the fluid flow. We emphasized three experimental features: L(t) is the crack length measured as a function of time, w(r, t∗)
is the crack shape measured at a certain time t∗,w(r∗, t) is the crack shape measured at a certain position r∗ andw(r, t) is the
crack shape measured as a function of space and time. ‘�’ denotes that the information is available from the listed paper and
‘—’ means the information is not reported in the paper. ‘H. F.’ represents hydraulic fracturing, while ‘M. T.’ represents magma
transport in the column for the motivation.

authors physical mechanisms L(t) w(r, t∗) w(r∗, t) w(r, t) motivation

Hubbert & Willis [11] E — — — — H. F.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Takada [12] B,E T � — — — M. T.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lister & Kerr [5] B,E V ,T � — — — M. T.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Menand & Tait [13] B,E T � — — — M. T.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Kavanagh et al. [14] B,E V ,T � — — — M. T.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Bunger & Detournay [15] E V ,T — � — — H. F.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Jeffrey & Bunger [16] E V � � � — H. F.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Lai et al. [17] E V � � � � H. F.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

this study E T � � � � H. F.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pressure ratio, to determine when the toughness effects are more significant than the viscous
effects or vice versa. For the mechanics of crack opening we denote R, W and P, respectively, as
the crack radius, the crack maximum half thickness and the scale of fluid pressure in the crack,
which balances the elastic stress applied on the crack surface. Also, E is Young’s modulus, σ is
Poisson’s ratio and 2γs is the energy per unit area required to open new crack surfaces in the
elastic solid.

(a) Toughness and viscous scaling arguments
When a crack is opened in an elastic medium due to the intrusion of fluid, the magnitude of the
fluid pressure, which balances the elastic stress (equation (A 1)) exerted on the crack surface, is

P ≈ E
2(1 − σ 2)

W
R

. (2.1)

A crack propagates when KI = KIc [22] (see appendix A), where KI ≈ 2
√

R/πP is the mode I
stress intensity factor for a penny-shaped crack (equation (A 2)) and KIc = √

2Eγs is the fracture
toughness [13,23], which is a material property that represents the resistance of a material to the
opening of new crack surfaces. Thus, the typical fluid pressure P, or the elastic stress, for a crack
radius R in a material dominated by the toughness of opening the crack is

P ≈
√

πγsE
2R

. (2.2)

For the fluid flow in the crack, lubrication theory can be applied due to the narrow geometry
of the crack (W � R), as inertial effects are expected to be small. Viscous stresses cause a radial
pressure gradient in the flow. In this viscous-dominated flow limit, the change of crack thickness
W with time can be shown [2] to scale as

W
t

≈ 1
3μ

W3P
R2 . (2.3)
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Table 2. Summary of the scaling laws in both the viscous and the toughness regimes. E is the Young modulus of the elastic
matrix,μ is the viscosity of the fracturing liquid, Q is the injection flow rate, 2γs is the energy per unit area needed to create
new crack surfaces and σ is the Poisson ratio. R,W and P denote, respectively, the approximate crack radius, half width and
fluid pressure of the growing crack.

regime viscous regime toughness regime

crack radius R≈
(

Q
4π

)1/3 ( E
6μ(1 − σ 2)

)1/9

t4/9 R≈
(

EQ2

32(1 − σ 2)2π 3γs

)1/5

t2/5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

crack thickness W ≈
(

Q
4π

)1/3 ( E
6μ(1 − σ 2)

)−2/9

t1/9 W ≈
(
(1 − σ 2)4πQγ 2

s

E2

)1/5

t1/5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fluid pressure P ≈ E
2(1 − σ 2)

(
E

6μ(1 − σ 2)

)−1/3

t−1/3 P ≈
(
(1 − σ 2)π 4E2γ 3

s

Q

)1/5

t−1/5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The relation between the crack radius R and the maximum thickness 2W is set by the global
volume conservation (equation (A 4)):

4πR2W ≈ Qt, (2.4)

where Q is the injection flow rate of the fracturing liquid.
In the viscous-dominated regime, the elastic stresses on the crack (equation (2.1)) balance

the fluid pressure in the viscous flow (equation (2.3)), and the toughness effects of the elastic
material are assumed negligible. By contrast, in the toughness-dominated regime, there is a
balance between the fluid pressure, or the elastic stresses, set by the elastic strain (equation (2.1))
and the fracture toughness (equation (2.2)), while the viscous effects are assumed negligible. Thus,
the scaling laws for the time dependence of R, W and P in the viscous and toughness regimes can
be obtained using equations (2.1), (2.3), (2.4) and (2.1), (2.2), (2.4), respectively, as summarized
in table 2.

(b) Pressure ratio
To examine the viscous effects, which are neglected in the toughness regime, we compare the
typical toughness-related stress �pf ≈ √

γsE/R (equation (2.2) without the respective coefficients)
to the typical viscous stress �pv ≈ μQ/W3 (equations (2.3) and (2.4) without the constant
coefficients). A dimensionless parameter, the pressure ratio �pf/�pv, can be identified to gauge
the relative importance of the toughness and viscous effects [8,17],

�pf

�pv
= γ

1/2
s E1/2W3

μQR1/2 . (2.5)

If we substitute in the time-dependent toughness-dominated scaling laws for R and W (table 2)
and drop the constant coefficients, equation (2.5) becomes[

�pf

�pv

]
t
= (1 − σ 2)13/5γ

9/5
s t2/5

μQ3/5E4/5 . (2.6)

By contrast, if we substitute the viscous-dominated scaling laws for R and W into
equation (2.5), we obtain the pressure ratio[

�pf

�pv

]
v

=
[

�pf

�pv

]5/18

t
, (2.7)

which is also consistent with the dimensionless toughness and viscosity defined by Savitski &
Detournay [8]. To be self-consistent, we use [�pf/�pv]t, as defined in equation (2.6), only when the
toughness scaling laws are valid, which implies [�pf/�pv]t � 1. In the viscous-dominated regime
where [�pf/�pv]t � 1, it is more consistent to use the viscous scaling laws and hence [�pf/�pv]v
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to estimate the pressure ratio (see eqn. (B 2) in Lai et al. [17]) and evaluate the relative importance
of toughness to viscous effects. For all of the experiments reported in §3 [�pf/�pv]t > 103.

3. Experimental design for the toughness-dominated regime
To conduct experiments on fluid-driven cracks in an elastic medium in the toughness-dominated
regime, we tune the parameters E, Q and μ so that [�pf/�pv]t � 1, as shown in table 3. The goal
of the experiments is to visualize the time evolution of the shape of the crack w(r, t) and the
propagation of the crack radius R(t). We have previously reported extensive experimental results
in the viscous-dominated regime [17]. Compared with the experimental set-up designed for the
viscous-dominated regime, for the toughness-dominated experiments reported here, we added a
long tube, which was connected to a syringe to precisely calibrate the injection flow rate of the
fracturing liquid. The details of the method are described below.

(a) Method
A transparent block of solid gelatin was prepared as the elastic matrix to be fractured. This
material has been used in several fluid-driven fracture experiments [12–14,24]. Young’s modulus
of the matrix can be changed by varying the concentration of the gelatin powder (Gelatin type A,
ThermoFisher Scientific, USA), and Young’s modulus was measured using the indentation
method [17,25]. A long tube was connected to a syringe and a needle, which was placed inside
the gelatin (figure 1a). The syringe and part of the tube were filled with air, while the rest of the
tube and the needle were filled with the fracturing liquid (water or mineral oil). At the beginning
of the injection process, the air–liquid interface was stationary, and the air was compressed. When
a threshold air pressure was reached, the air–liquid interface started to move (shown by the red
arrow in figure 1a) and reached the speed calculated from the injection rate Q set by the syringe
pump (Harvard apparatus, PhD Ultra) within a 7% error. A USB IDS uEye camera (1280 × 1024
pixels, frame rate = 10 fps) was placed on top of the block and a Nikon D5100 camera (640 × 424
pixels, frame rate = 29 fps) was placed on the side to record the three-dimensional shape of the
crack. The camera configuration is shown in figure 1a and typical side and top views of a growing
crack are shown in figure 1b,c.

When the liquid enters the solid matrix, it creates a penny-shaped crack. We define time zero
as the moment when the liquid, dyed red for visualization as shown in figure 1, appears at the
tip of the needle. The error from this determination is ±0.5 s. In table 3, we summarize the typical
values of μ, E and Q used in our experiments. The viscosity μ varied by a factor of 27, E by a
factor of 8 and Q by a factor of 30. We used γs ≈ 1 J m−2 measured by Menand & Tait [13]. In the
calculation of the pressure ratio (equation (2.6)), t is chosen to be the time half-way through the
experiments. The pressure ratio [�pf/�pv]t ≈ 103 − 104 in our experiments, which confirms that
the experiments are in the toughness-dominated regime.

In all our experiments, the buoyancy effects from the density difference between the fracturing
liquid and the elastic solid are negligible. For example, in a typical experiment, the crack
radius is R ≈ 2 cm, the density difference is �ρ ≈ 900 kg m−3 and the gelatin Young’s modulus
is E ≈ 20 kPa. Consequently, we can estimate the typical buoyancy-related stress to be �ρgR ≈
180 Pa, and the toughness-related stress is �pf ≈ √

γsE/R ≈ 103 Pa. Thus, the buoyancy effects are
negligible in the experiments. In addition, the viscous drag from flow along the needle and the
long tube is also negligible compared with the toughness-related stresses. For example, given
the inner radius (Rin) and the length (L) of the needle and tube (figure 1), μ ≈ 26.9 mPa s and
Q ≈ 1 ml min−1, the viscous stresses from the flow along the needle and the tube is estimated to
be μQL/(Rin)4 ≈ 88 Pa, which is negligible compared with the typical toughness-related stresses
�pf ≈ 103 Pa. An experimental verification of the lack of significant needle-size effects is also
provided in appendix C.

To estimate the plastic effects, we calculate the size of the process zone rp at the crack tip
where the inelastic deformation occurs. For a gelatin of a typical yield stress τy ≈ 104 − 105 Pa [26],
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constant
flow rate Q air fracturing liquid

injection point
(i) (ii) (iii) (iv)

(i) (ii) (iii) (iv)

1 cm

1 cm

tube (Rin = 1.59 mm)

800 mm

camera
(top view)

camera
(side view)

solid gelatin

101.6 mm crack
113 mm

150 mm

55 mm needle
(Rin = 1.08 mm)

blue light panel

t1 = 0 s t2 = 30.2 s t3 = 105 s t4= 201 s(b)

(a)

(c)

Figure 1. (a) Schematic of the experimental set-up. A needle connected to a long tube is inserted into a block of elastic gelatin.
The long tube and the needle are filled with the fracturing liquid. An air–liquid interface in the long tube is used to calibrate
the flow rate of the liquid. A syringe filled with air first compresses the air column, then pushes the liquid forward to create a
penny-shaped crack inside the gelatin block. The direction of liquid flow is marked by the arrow above the air–liquid interface.
A blue light panel, facing the camera, was placed behind the crack for visualization purposes. (b) The side view and (c) top view
of a penny-shaped crack. t = 0 is defined as the time when the fracturing liquid emerges from the needle tip. The flow rate at
which the fracturing liquid is injected is Q= 1 ml min−1, the fracturing liquid is water (mixed with fluorescein and red dye)
and Young’s modulus of the gelatin matrix is E = 77 ± 7.7 kPa. Rin represents inner radius.

Table 3. The experimental parameters and the pressure ratios for all experiments in the toughness-dominated regime. The
pressure ratio is time-dependent (defined in equation (2.6)) and we chose t to be the time half way through the experiments.
The viscosities of themineral oils weremeasured using a rheometer (PhysicaMCR 301).We use a standard value for the viscosity
of water. Water is mixed with fluorescein and red dye, while mineral oils are mixed with fluorescein only.

viscosity Young’s modulus injection rate pressure ratio

fracturing liquid μ (mPa s) E (kPa) Q (ml min−1) [�pf/�pv]t
water 1 74 ± 7.4 1 ± 0.07 1.8 × 104

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water 1 24 ± 2.4 1 ± 0.07 4.3 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water 1 16 ± 1.6 1 ± 0.07 6.4 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water 1 55 ± 5.5 1 ± 0.07 2.3 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

water 1 120 ± 12 3 ± 0.21 4.1 × 103
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mineral oil 11.5 ± 0.2 21 ± 2.1 0.5 ± 0.04 8.9 × 103
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mineral oil 26.9 ± 0.1 21 ± 2.1 0.1 ± 0.007 1.9 × 104
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 2. The thickness distribution (2w) of the entire crack measured at t = 116 s. Experimental parameters: μ = 11.5 ±
0.2 Pa s, E = 77 ± 7.7 kPa and Q= 1 ml min−1. We note that the signal at the centre of the crack was blocked by the needle.

assuming K = KIC, the process zone rp ≈ K2/τ 2
y ≈ K2

IC/τ 2
y ≈ 2Eγs/τ

2
y ≈ 0.4 µm–0.4 mm, which is

much smaller than the representative crack radius R ≈ 20 mm in our experiments. Thus, the
plastic effects are negligible for the experiments of the current paper.

(b) Measurement of crack shape
The advantage of using transparent gelatin is that we can visualize the shape of the crack. We used
Bunger’s [20] imaging technique, measuring the change of light intensity as light passes through
the liquid-filled crack, to obtain the time-dependent crack thickness w(r, t) [17]. This technique
has been used previously to obtain the crack thickness for a penny-shaped crack [15,20] and for a
saucer-shaped crack near a free surface [27].

We set a uniform blue light background of light intensity I0 behind the crack, dye the fracturing
liquid with fluorescein (15 µl fluorescent yellow 131 SC, Keystone +10 g fracturing liquid) and
measure the intensity of light I after it passes through the liquid-filled crack. We calibrate the
change of the blue light intensity (I/I0), as it travels through the fluorescein-filled liquid, as a
function of liquid thickness d. Thus, we are able to convert the information of the measured blue
light intensity I to the crack thickness 2w (for technical details, see [17]). A typical result is shown
in figure 2.

4. Results and observations
Once the liquid enters the solid matrix, it creates a penny-shaped crack (see figure 1b, c for the side
and top views, respectively). The thickness of a crack 2w at any given time can be obtained using
the imaging technique described in §3b, as shown in figure 2. We will show in this section the
time dependence of both the crack radius R(t) and the crack shape 2w(r, t), and the dimensionless
data rescaled by the toughness scaling laws (table 2).

(a) Dimensional results
We measured the radius of the crack as a function of time R(t) for various liquid viscosities μ,
Young’s moduli E and injection flow rates Q. The results are shown in figure 3a. We chose carefully
the experimental parameters so that 4 × 103 ≤ [�pf/�pv]t ≤ 6 × 104 (table 3); thus, the viscous
effects are negligible. The results show that the crack radius R exhibits a power-law dependence
on time, as shown in the log–log plot (figure 3a).
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Figure 3. (a) Crack radius R(t) as a function of time for various values ofμ, E and Q. (b) The time evolution of the crack profile
shapes w(r, t). Each curve is the crack profile measured at a fixed cross section. The time difference�t between two adjacent
curves is 10 s. The flat curve at the bottom corresponds to t = 0. Note that r = 0 is defined at the centre of the crack, where the
light is blocked by the needle and no data were recorded. Experimental parameters:μ = 11.5 ± 0.2 Pa s, E = 77 ± 7.7 kPa
and Q= 1 ml min−1.

Also, for a given experiment we report the crack half thickness profile w(r, t) at a cross section
through the centre of the crack, as shown in figure 3b. The red flat curve represents the crack
profile at t = 0 and the crack profiles are measured every 10 s. For all curves there is a region at
the centre of width 6 mm, where the light signal is blocked by the needle.

(b) Dimensionless results
To compare the results R(t) and w(r, t) with the toughness scaling laws, we rescaled the raw
experimental data in figure 3a,b by the toughness scaling laws provided in table 2. When the
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Figure 4. (a) The rescaled crack radius using the toughness scaling arguments in table 2. The collapse of experimental data
supports the toughness scaling laws. We fit each rescaled curve at late times with a power-law form (see the equation shown
on the plot) and obtain an average pre-factor k = 1.14 ± 0.35 and exponentα = 0.46 ± 0.06. The power-law curve with an
average k andα is shown by the dark line. (b) The dimensionless crack profiles, in which r is rescaled by R andw is rescaled by
W. The black curve represents the best elliptical fit, equation (4.1), where A≈ 0.61. The asymptotic solution in equation (B 10)
gives A≈ 0.47 and the difference in A is likely due to the uncertainties in measuring E, Q, w, r, t and the values of γs, σ used
in this paper. The convergence of the dimensionless crack shapes to a universal shape demonstrates the self-similarity of the
crack shapes.

data are rescaled using the scaling laws in table 2, good collapse of the rescaled crack radius
was obtained, as shown in figure 4a. We fit each rescaled experimental curves with a power-law
function, and obtain an average pre-factor k = 1.14 ± 0.35 and exponent α = 0.46 ± 0.06, which
shows a good agreement with the toughness scaling law.
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1 cm 1 cm 

(b)(a)

Figure 5. (a) The roughness of a crack surface is visualized using a higher concentration of fluorescein (200µl fluorescent
yellow 131 SC, Keystone+10 gmineral oil) in the fracturing liquid than the concentration used for the crack shapemeasurement.
The crack surface appears to be rough when we use mineral oils as the fracturing liquid. The fracturing liquid in this figure is
mineral oil of viscosityμ = 11.5 mPa s. The direction of the excitation blue light is into the page. (b) The crack surface appears
to be smooth when the injected liquid is water (dyed red).

We next rescale the time-dependent crack profile shapes (figure 3b). Since the dependence
of both the crack radius R and maximum half thickness W on time is available (table 2), we
can rescale r and w(r, t) using the scaling laws for R and W. Here, instead of γs ≈ 1 J m−2, we
use γs ≈ 5.15 J m−2 determined by fitting the crack radius R with the theoretical prediction in
equation (B 8). We obtained convergence of the dimensionless profile shapes to a universal
dimensionless crack shape after around 30 s, as shown in figure 4b. The collapse of the crack
shapes suggests that the profile shapes are self-similar.

We also fit the dimensionless crack shapes with an elliptical functional form (to be consistent
with the theoretical prediction, equation (B 10)):

w
Wc

= A

[(
3π

2

)4/5
−

(
r

Rc

)2
]1/2

(4.1)

and obtained A ≈ 0.61, as shown in the black curve in figure 4b. The asymptotic solution in
equation (B 10) gives A = (64/3π6)1/5 ≈ 0.47. We note that there is a 23% difference for the value
A between the theoretical prediction and the fit of experimental data. This is likely to be due to
the measurement errors for Young’s modulus of gelatin E, injection flow rate Q, crack thickness
w(r, t) and the value of Poisson’s ratio σ and 2γs used in the paper. In addition, the difference may
also come from the higher order effects for the theoretical prediction, and other effects we did not
consider in the theory, such as the plasticity and nonlinearity effects.

(c) Crack roughness
We note that for water as the fracturing liquid, the crack surface appeared smooth, while with
mineral oils as the fracturing liquid, the crack surface appeared rough. The detailed structure
of a rough crack surface with mineral oils as the fracturing liquid can be clearly observed, as
shown in figure 5a, as we change the direction of illumination (the direction of the excitation
blue light is into the page) and increase the dye concentration (200 µl fluorescent yellow 131 SC,
Keystone +10 g mineral oil). In comparison, figure 5b shows a smooth crack surface with water
as the fracturing liquid.
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Figure 6. A comparison of the experimental data between the toughness and the viscous regimes, both rescaled by the
toughness scaling laws. The data in the viscous regime, where 0.62< [�pf/�pv]v < 0.97, were adapted from reference [17]
and shown with the empty symbols. The data in the toughness regime, where 4.1 × 103 < [�pf/�pv]t < 6.4 × 104, are
shownwith solid symbols. We note that the functional form of the viscous and toughness scaling laws (table 2) are very similar,
thus the toughness scaling laws also seem to collapse the data in the viscous regime. However, there is a gap in the pre-factor
fromfitting the toughness and viscous datasets. The toughness data suggest an average pre-factor k = 1.14 ± 0.35 (solid line),
while the viscous data suggest an average pre-factor k = 0.7 ± 0.14 (dashed line).

5. Discussion
In §4, we have shown the self-similarity of the time evolving crack shapes. In addition, there
is good agreement between the experimental results and the predictions of the scaling laws in
the toughness-dominated limit. Similar procedures had been developed by Lai et al. [17] for the
experiments and scaling laws in the viscous-dominated regime. Now we compare the toughness
data [�pf/�pv]t � 1, with the viscous data [�pf/�pv]v < 1.

We plotted the time-dependent crack radius R(t) from experiments in both the viscous and
toughness regimes, both rescaled by the toughness scaling laws, as shown in figure 6. We observe
that the functional forms of the viscous and toughness scaling laws are very similar in terms of
time dependence (t4/9 and t2/5, respectively), and the dependence on μ, E and Q shows modest
differences (table 2). Given these similarities in the functional forms, within the parameter limits
of our experimental system the toughness scaling law seems to collapse the experimental data in
both the viscous and toughness regimes.

Another important issue is that the pre-factors in the power-law forms are different between
our experimental data in the viscous and toughness regimes. In particular, for experimental data
in the toughness limit, the pre-factor is k = 1.14 ± 0.35, as shown by the solid line in figure 6.
By contrast, for experimental data in the viscous regime, the pre-factor is k = 0.7 ± 0.14, as shown
by the dashed line in figure 6.

However, an experiment in the viscous limit with an extremely small pressure ratio will do less
well in collapsing the viscous data in figure 6, when rescaled by the toughness scaling law. This
feature is because the crack radius predicted by the viscous and toughness scaling laws, denoted
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by Rv and Rt, respectively, vary with the pressure ratio according to

Rv

Rt
≈

[
�pf

�pv

]2/5

v
=

[
�pf

�pv

]1/9

t
, (5.1)

though the exponent is small. An improper choice of scaling laws will give a larger discrepancy
between the theoretical and experimental results when the pressure ratio is very different from
unity. For example, consider a model hydraulic fracturing system where the typical Young’s
modulus of shale E = 40 GPa, fracture toughness KIc = 0.5 MPa m−1/2, Poisson’s ratio σ = 0.25,
fracturing liquid viscosity μ = 0.5 Pa s and constant injection flow rate Q = 0.08 m3 s−1. About 1 h
after the fracture grows, the system is in the viscous regime as the pressure ratio is [�pf/�pv]v ≈
0.03. If we use the toughness scaling, we predict the crack size to be approximately 260 m long,
while the viscous scaling predicts only 95 m. Thus, choosing the appropriate scaling law is
essential to provide a good estimate for the dynamics of crack propagation.

6. Conclusion
A laboratory experiment was developed to study fluid-driven cracks inspired by the process
of hydraulic fracturing. Two possible sets of scaling arguments, the viscous and toughness
scalings, were discussed, considering whether the resistance of crack propagation is from the
viscous stresses or the toughness-related stresses. In our previous work [17], we chose gelatin
as an analogue for rocks and investigated the dynamics of fluid-driven cracks in the viscous-
dominated regime. In this paper, we redesigned the experiments to study the crack dynamics in
the toughness-dominated regime. Time-dependent information of the crack radius R(t) and crack
shape w(r, t) were obtained in our experiments, and the dimensional data were rescaled based on
the toughness scaling laws. The collapse of dimensionless data for a wide range of experimental
parameters (E, Q, μ) demonstrates the success of the toughness scaling arguments.

In particular, the pressure ratio (equation (2.5)), a dimensionless parameter defined as the ratio
of toughness-related stresses to viscous stresses, is identified to be a guideline for the choice
of the appropriate scaling laws to describe the crack propagation. We note that the difference
between the predictions for the crack size in the viscous- and toughness-dominated regimes can
be significant when the pressure ratio departs from unity.

Our experimental system provides an idealized model to study fluid-driven fracturing
operations such as hydraulic fracturing. Alternative experimental models, considering the
heterogeneity of the rocks, the leak-off of liquid from the cracks, the effects of proppants in the
fluid flow and the porelastic effects of the solid matrix, could be potentially explored from proper
modifications of the experimental system. We hope to report some of these studies in future work.
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Appendix A. Governing equations in the toughness-dominated regime
Let us consider an axisymmetric penny-shaped crack in an infinite elastic medium. We define
r = 0 at the centre of the crack and r = R(t) at the crack radius. The z-axis is aligned with the axial
direction. We assume the shear traction on the crack surface is small compared with the normal
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traction. The elastic stress σzz = −p(r, t) is related to the shape of the crack by [2]

p(r, t) = − E
2(1 − σ 2)

∫R(t)

0
M

( r
s

) ∂w(s, t)
∂s

ds
s

, (A 1)

where w is the half crack thickness and M is a kernel defined by Spence & Sharp [2].
In the realm of linear elastic fracture mechanics, the stress singularity at the crack tip can be

characterized by the stress intensity factor. The mode I stress intensity factor for a penny-shaped
crack is Rice [21]:

KI = 2√
πR

∫R(t)

0

p(r, t)√
R2 − r2

r dr. (A 2)

Irwin [22] showed that a crack propagates when KI reaches a critical value KIc, the fracture
toughness which characterizes the difficulty in opening new crack surfaces in a material.

KI = KIc. (A 3)

The fracture toughness KIc is a property of the elastic material [6] which can be measured
experimentally [13].

Lastly, the fluid flow inside the crack is incompressible, and thus the crack volume is equal to
the volume of fracturing liquid supplied at flow rate Q,

4π

∫R(t)

0
rw(r, t) dr = Qt. (A 4)

The scaling argument based on equations (A 1)–(A 4) can be obtained. This scaling argument
(toughness limit) is different from the scaling argument in Lai et al. [17], which is in the viscous
limit. Both the viscous and toughness scaling arguments are summarized in table 2.

Appendix B. Crack shape in the toughness-dominated regime
In this section, we provide an approximate solution for the crack shape and front location in the
toughness regime. We first note that the equation for the pressure distribution (A 1) can also be
rewritten as a double integral equation (e.g. [8,28])

w(r, t) = 4R(1 − σ 2)
πE

∫ 1

r/R

ξ√
ξ2 − (r/R)2

∫ 1

0

xp(xξR, t)√
1 − x2

dx dξ . (B 1)

In the toughness regime, the fluid flow within the crack is quasi-steady. The fluid pressure within
the crack is only a function of time (independent of space). We denote the pressure as ps(t), and
from equation (B 1), we obtain the elliptical crack shape

w(r, t) = 4R(1 − σ 2)ps

πE

[
1 −

( r
R

)2
]1/2

. (B 2)

We note that at this time, the time-dependent functional forms of ps(t) and R(t) are yet to be
determined.

In the toughness regime, given that the pressure ps(t) is only time dependent, the crack
propagation criterion (A 3) and the stress intensity factor (A 2) can be rewritten to provide an
explicit expression for pressure ps(t) as a function of crack radius R(t):

ps(t) = π1/2KIC

2R1/2 . (B 3)
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Figure 7. The effects of needle size on the dimensionless crack radius versus time. Rin represents the inner radius of the needle.
The collapse of experimental data indicates that the effects of the needle size are not important in our experiments. The dark
line is the same line as shown in figure 4awith k ≈ 1.14 andα ≈ 0.46.

We now combine (B 2) and (B 3) to obtain an expression for the crack half thickness w(r, t) with
only R(t) to be determined:

w(r, t) = 2KIC(1 − σ 2)
π1/2E

R1/2
[

1 −
( r

R

)2
]1/2

. (B 4)

Then, we can substitute the profile shape (B 4) into the global mass constraint (A 4), and we
obtain the time evolution of the crack radius R(t):

R(t) =
[

9EQ2

128π (1 − σ 2)2γs

]1/5

t2/5. (B 5)

Once the location of crack tip R(t) is known, we can substitute (B 5) into (B 3) to obtain the liquid
pressure inside the crack:

ps(t) =
[

2π3(1 − σ 2)E2γ 3
s

3Q

]1/5

t−1/5; (B 6)

we can also substitute (B 5) into (B 4) to obtain the time evolution of the crack shape:

w(r, t) =
(

48
π4

)1/5
[

π (1 − σ 2)4Qγ 2
s

E2

]1/5 [
1 −

( r
R

)2
]1/2

t1/5. (B 7)

From the scaling arguments in the toughness regime presented in table 2, we can define the
characteristic scales for the pressure Pc, crack thickness Wc and radius Rc

Rc ≈
[

EQ2

32π3(1 − σ 2)2γs

]1/5

t2/5,

Wc ≈
[

π (1 − σ 2)4Qγ 2
s

E2

]1/5

t1/5 and Pc ≈
[

π4(1 − σ 2)E2γ 3
s

Q

]1/5

t−1/5, (B 8)
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Finally, we can now compare the scaling results and the detailed calculations of the asymptotic
solutions, which suggests that

R(t) =
(

3π

2

)2/5
Rc, w(0, t) =

(
48
π4

)1/5
Wc and ps(t) =

(
2

3π

)1/5
Pc. (B 9)

The crack shape (B 7) can also be written in terms of the characteristic scales:

w(r, t)
Wc

=
(

64
3π6

)1/5
[(

3π

2

)4/5
−

(
r

Rc

)2
]1/2

, (B 10)

which can be used to compare with the experimental data in figure 4b.

Appendix C. Examination of the effect of the needle size
The size effects of the injection needle are not considered in the scaling laws (table 2). We
experimentally investigated the effect of the needle size. For the similar parameter regimes
described in §4a, a set of experiments with different needle sizes was conducted, and very good
data collapse (figure 7) was observed based on the toughness scaling laws (table 2). Thus, the
needle size does not appear significant in our experiments and does not influence the scaling laws.
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