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In hydraulic fracturing, water is injected at high pressure to
crack shale formations. More sustainable techniques use aqueous
foams as injection fluids to reduce the water use and wastewater
treatment of conventional hydrofractures. However, the physi-
cal mechanism of foam fracturing remains poorly understood,
and this lack of understanding extends to other applications of
compressible foams such as fire-fighting, energy storage, and
enhanced oil recovery. Here we show that the injection of foam
is much different from the injection of incompressible fluids and
results in striking dynamics of fracture propagation that are
tied to the compressibility of the foam. An understanding of
bubble-scale dynamics is used to develop a model for macro-
scopic, compressible flow of the foam, from which a scaling
law for the fracture length as a function of time is identi-
fied and exhibits excellent agreement with our experimental
results.
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The flow of compressible aqueous foam has a broad range
of applications, such as fire-fighting (1–3), compressed air

energy storage (4), materials processing (5), and enhanced oil
recovery, where the injection of foam instead of water (6–
12) suppresses viscous fingering at the fluid–fluid interface. In
hydraulic fracturing (13, 14), water is injected at high pressure
to crack shale formations, releasing trapped oil and natural gas.
Alternative techniques using foams as injection fluids have been
developed to reduce the water use of conventional hydrofrac-
ture (15–17). Here we show that when a foam is injected at high
pressures to fracture an elastic medium, the foam compressibil-
ity produces a time-dependent flow that controls the dynamics of
fracture propagation.

Although steady flow of foam in pipes (3, 10, 18–22) and 2D
channels (6, 23) has been studied extensively, time-dependent
foam flows resulting from the compressibility of bubbles are
poorly understood. Here, we quantify these unsteady flows using
one-dimensional model experiments, which we rationalize using
mechanical principles. Using these results, we develop scaling
relations for the propagation of foam-driven brittle fractures that
are in quantitative agreement with our experiments.

A Qualitative Observation for Foam-driven Fractures
We fracture an elastic solid matrix by injecting into it an aqueous
foam from a syringe, through a tube and needle (Fig. 1A). The
elastic matrix is chosen to be gelatin since it models the brittle
and elastic properties of rocks (24–29) and allows us to visual-
ize the fracture dynamics (24, 26, 27, 30–32). We use Gillette®

Foamy shaving foam in our experiments due to its well-known
and robust properties (33–36). Initially, the syringe, tube, and
needle are filled with foam that is at equilibrium with atmo-
spheric pressure p∞. During the experiment, the volume of the
syringe decreases with time at a rate Q . Initially, the injection
causes the foam in the entire system to be compressed. Once
the foam in the syringe reaches a certain volumetric strain (≈
30% for the experiment shown in Fig. 1 C and D), the foam
fractures the elastic matrix in a lens shape (37) [also referred
to as a penny shape (38)] and propagates along a plane (Fig.
1 C and D). We are interested in the growth of the crack

radius R(t) for a constant volumetric rate of injection Q . For
an incompressible flow, the volume of the crack V grows as
Qt . However, we find that the dynamics of the crack growth
are altered by the compressibility of the foam, as we discuss
below.

The pressure drop along the tube and needle can be estimated
from a balance of stresses in the foam. The pressure gradient
along the foam flow balances the shear stress gradient across
the tube; the inertia of the foam is negligible for the injection
rates studied here. Therefore, the shear stress at the tube wall
is τw =− a

2
∂p
∂z

, where z is in the flow direction and a is the tube
radius. For smooth walls and τw smaller than the yield stress,
the foam moves as a plug with velocity u , lubricated by a thin
film of liquid with viscosity µ near the wall (39). Denkov et al.
(39) showed that τw ≈κ(µγu)1/2/(2R̄), where γ is the interfa-
cial tension and R̄ is the mean radius of the bubbles (40). Here,
κ is a dimensionless resistance that depends on the liquid volume
fraction ε of the foam and is related to the fractional area of the
tube wall wetted by liquid films (39, 41, 42) (see SI Appendix).
Combining these approximations, the average velocity of foam
in the tube of length ` obeys

u = uD

(
∂(p/p∞)

∂(z/`)

)2
, where uD =

(R̄ap∞)
2

γµ(κ`)2
[1]

is the typical foam velocity when the pressure drop along the
tube is on the order of atmospheric pressure p∞—that is,
∂(p/p∞)/∂(z/`) =O(1). Relative motion between liquid and
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Fig. 1. (A) Schematic of the experimental setup. Foam is injected from a
syringe (initial volume V0 = 25 mL) through a tube (radius, 0.89 mm; length,
0.32 m; initial volume, 0.8 mL) and needle (radius, 1.08 mm; length, 0.11 m;
initial volume, 0.4 mL) into an elastic gelatin matrix. (B) A microscopic
view of the foam (Gillette® Foamy), whose constituents include water and
hydrocarbon gases. The bubble radii range from 6 to 47 µm (polydisperse).
The growth of a lens-shaped crack driven by foam injection is observed from
both (C) top and (D) side. In this experiment, t0 = 40 s, where t0 denotes the
time at which foam first enters the elastic matrix.

bubbles [i.e., drainage (43–45)] is negligible for the pressure
gradients used in our experiments.

To estimate the pressure drop along the tube, we measured
the liquid properties, γ= 29± 2 mN/m and µ= 3± 1 mPa·s,
after separating the liquid phase using a centrifuge (see SI
Appendix). We measured the mean bubble radius R̄ = 12±
1 µm using optical microscopy (e.g., Fig. 1B). We weighed the
foam at p∞ to determine its liquid volume fraction ε∞≈ 0.1,
and note that κ(ε= ε∞)≈ 4 (see SI Appendix). For a typical
measured foam velocity in the tube u ≈ 1.5 cm/s, we estimate
using Eq. 1 that the typical pressure drop along the injection
tube is ∆pt ≈ (γµu)1/2κ`/(R̄a)≈ 1.8× 105 Pa. We measured
the foam pressure during the fracturing experiment and also
found the typical foam pressure drop along the tube to be
O(105) Pa (see SI Appendix). Since ∆pt =O(p∞), compress-
ibility effects are important. The foam does not coarsen sig-
nificantly for the range of pressures in our experiments (see
SI Appendix).

When a foam-driven fracture of a typical radius R≈ 20 mm
and thickness 2W ≈ 8 mm is generated in the gelatin matrix
(Young’s modulus E ≈ 66 kPa, Poisson’s ratio σ≈ 0.5), the typ-
ical elastic stress due to the elastic deformation around the
fracture is ∆pe ≈EW /(2(1−σ2)R)≈ 8.8× 103 Pa (37, 46, 47).
Since ∆pt�∆pe , the stresses related to fracture formation are
negligible compared with the pressure drop in the foam along
the tube. Therefore, to better understand the dynamics, the foam
flow can be modeled with a one-dimensional experiment where

a tube of length ` and radius a is connected to a syringe. The
outlet of the tube, rather than connecting to an elastic matrix,
is directly exposed to atmospheric pressure (Fig. 2A). Note that
` represents the combined length of the tube and needle in the
fracture experiments (Fig. 1A).

A One-Dimensional Model Experiment
In the one-dimensional model experiment (Fig. 2A), the entire
tube and the syringe are filled with foam at atmospheric pres-
sure, and the syringe is compressed at a volumetric rate Q
(see Table 1). As with the fracture experiment, no foam flow
is observed at the tube outlet until time t0. To characterize the
flow, we measure the volume of foam collected at the outlet
of the tube as a function of time V (t) (Fig. 2B). The experi-
ment ends when the foam in the syringe is completely injected
into the tube. Experimental parameters are summarized in
Table 1.

For incompressible flows, mass conservation necessitates that
V (t) =Q(t − t0) (see experiment K and the dashed line in Fig.
2B). However, in the foam experiments (experiments A–J), we

1
1

A 0.36  
B 0.65 
C 1.29 
D 1.94
E 1.08 
F 0.44 
G     14.06 
H 0.24  
I 0.08  
J 4 × 10
K N/A  

A

B

C

Fig. 2. (A) Foam flow in a tube of length ` and radius a. The tube inlet
connects to a syringe filled with foam (volume V0), and the tube outlet is
exposed to atmospheric pressure. The syringe pump reduces the syringe vol-
ume with a constant injection rate Q. Initially no foam is observed to exit
the outlet of the tube, and the foam in the entire system is compressed.
At t0, foam exits the tube outlet. (B) The volume of foam collected at the
outlet of the tube V is measured as a function of time for different Q, `, a,
V0, µ, and ε∞. The experimental parameters are shown in Table 1. Two flow
regimes are observed. When ϕ� 1 (Expt. J), where ϕ is defined in Eq. 2, V
approaches the steady-state incompressible results, V = Q(t− t0), as shown
by the dashed line. When ϕ=O(1), foam compressibility affects the flow
and a nonlinear dependence of V on t is observed (experiments A–I). (C) The
dimensionless volume V versus dimensionless time τ for the fast-injection
experiments (experiments A–I) collapses onto a universal curve. For simplic-
ity, we fit a power-law function to the dimensionless curve V(τ ), as shown
by the solid line (Eq. 3).
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Table 1. Experimental parameters for the one-dimensional
model experiments (experiments A–K) shown in Fig. 2

Experiment Q, mL/min `, m a, mm V0, mL µ, mPa· s ε∞ Fluid

A 10 0.43 1.19 25 3 0.1 Foam
B 10 0.43 0.89 25 3 0.1 Foam
C 20 0.43 0.89 25 3 0.1 Foam
D 30 0.43 0.89 25 3 0.1 Foam
E 10 0.43 0.89 15 3 0.1 Foam
F 10 0.43 0.89 37 3 0.1 Foam
G 10 1.20 0.89 25 3 0.1 Foam
H 10 0.43 0.89 25 9 0.2 Foam
I 10 0.43 0.89 25 3 0.2 Foam
J 0.5 0.01 0.89 25 3 0.1 Foam
K 0.5 0.01 0.89 25 1 — Water

We varied the injection flowrate Q, the tube length ` and radius a, the
initial volume V0 of the foam-filled syringe, the viscosity µ of the liquid in
the foam, and the liquid volume fraction ε∞ of the foam.

observed V (t) to be significantly different from that of incom-
pressible flows. Since Q is constant, the nonlinear dependence
of V on time (Fig. 2B) indicates that the foam is compressed
throughout the experiment. The experimental results vary with
Q , `, a , and the initial volume of the syringe V0. We also change
the foam properties, in particular µ and ε∞, by mixing glycerol
and water with the foam. The effects of both µ and ε∞ on the
experimental results are negligible, as shown by experiments B,
H, and I in Fig. 2B.

Below, we use physical arguments to identify the important
dimensionless groups and rationalize our experimental observa-
tions. Assuming that ε is uniform throughout the syringe, liquid
mass conservation requires that d[ε(V0−Qt)]/dt + επa2u = 0
at the tube inlet. The first term represents the rate of change
in the mass of foam in the syringe due to the injection. The sec-
ond term is the mass flow rate of foam vented into the tube. The
first term gives a characteristic time of injection t∗=V0/Q over
which relative changes of ε are of O(1). Then, liquid mass con-
servation inside the tube, ∂ε/∂t + ∂(εu)/∂z = 0, establishes a
characteristic foam speed u∗= `/t∗= `Q/V0. The ratio between
the characteristic foam speed u∗ in the tube and the speed
uD , at which compressibility effects dominate (Eq. 1), defines a
dimensionless injection rate

ϕ≡ u∗

uD
=

Qγµκ2`3

V0(R̄ap∞)
2 . [2]

The dimensionless parameter ϕ is also a measure of the mag-
nitude of the pressure drop ∆pt along the tube relative to
atmospheric pressure p∞. Combining Eqs. 1 and 2, where the
foam velocity in the tube is u =O(u∗), the dimensionless pres-
sure drop along the tube is ∆pt/p∞=O(

√
ϕ). Thus, a larger

injection rate ϕ results in greater compressibility effects in the
foam flow.

Fast-Injection Regime. The value of ϕ for each experiment is cal-
culated and shown in Fig. 2C. For experiments A–I, ϕ=O(1) so
that ∆pt/p∞=O(1). Therefore, the injection is fast enough so
that compressibility effects are important and the experiments
are in the fast-injection regime. The foam volume at the outlet
V (t) =πa2

∫
udt therefore has a characteristic scale πa2u∗t∗=

πa2`, suggesting a dimensionless volume V =V /(πa2`). A
dimensionless time τ can be defined as time rescaled with the
characteristic injection time t∗—that is, τ ≡ (t − t0)/t∗. After
nondimensionalizing our data in Fig. 2B using the dimensionless
groups (V and τ) obtained above, we find that the dimension-
less data of volume V and time τ collapse onto a universal curve

over a range of injection rate Q , initial volume V0, tube length `
and radius a , liquid viscosity µ, and liquid volume fraction ε∞, as
shown in Fig. 2C.

The dimensionless universal curve is well-fit by a power law at
the late times, as shown by the solid line in Fig. 2C:

V =βτα for ϕ=O(1), [3]

where β= 39± 6 and α= 2.5± 0.3 are dimensionless fitting
parameters averaged over all fast-injection experiments. Near
the end of some experiments (τ ≈ 1), the data deviate from
the power law. Note that Eq. 3 shows no dependence of
foam flow dynamics on µ and ε∞, which agrees with the
observations (experiments B and H). The experimental system
contains 10 parameters (Q , `, a,V0,µ, γ, ε∞, R̄,V , t) yet can,
for the parameter range of our experiments, be adequately
described with a simple power law involving two dimensionless
parameters (V and τ).

1

1

1

1 (mL/min) (kPa)
5              64      0.3
5              66      0.3
5            125      0.3
5            134      0.3
5              28      0.3

15              66      1.0
30              66      1.9

A

B

C

Fig. 3. (A) A snapshot of fracture driven by foam and water injection taken
at t− t0 = 100 s, where t0 is the time when the fracture starts to grow.
Although the experimental parameters are the same for both foam and
water (Q = 5 mL/min and E = 66 kPa), the fracture size is visibly different. (B)
The radius R of a foam-driven crack measured in time for the fast-injection
regime [∆pt/p∞ =O(

√
ϕ) =O(1)]. Different curves correspond to experi-

ments with different E and Q. The fracture radius grows linearly with time
at the late times, which is different from the results of the incompressible
fluid-driven cracks (see SI Appendix). (C) The collapse of data rescaled by Eq.
5 shows a good agreement between the experiments and the scaling law
of fracture growth driven by compressible foam flow (the solid line). The
dimensionless prefactor A = 0.8± 0.1 is obtained by fitting Eq. 5 to each
experimental curve at late times.
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Slow-Injection Regime. On the other hand, when ϕ� 1, ∆pt/
p∞=O(

√
ϕ)� 1. Then, compressibility effects are small and

the experiments are in the slow-injection regime. The flow
approaches a steady state (∂ε/∂t = 0) with u =Q/(πa2) and
V =Q(t − t0) (see Expt. J where ` and Q are sufficiently small
so that ϕ≈ 4× 10−7). The injection of water (Expt. K, t0 = 0) in
comparison with foam (Expt. J, t0 = 80 s) at the same Q , a, `,V0

is shown in Fig. 2b. The crossover time at which foam flow
approaches the incompressible result V =Q(t − t0) (dashed line
in Fig. 2b) can be estimated by matching the initial unsteady
velocity with the incompressible steady-state asymptote. At short
times, the mass flux vented into the tube is small, so that the
pressure increase δps and volume decrease −δVs in the syringe
for isothermal compression follows δps/p∞≈−δVs/V0≈Qt/
V0 = τ . The initial unsteady foam flow velocity (Eq. 1) is
u ≈ uD(δp/p∞)2≈ uDτ

2 and volume is V ≈ π
3
a2uD t

∗τ3. The
time for foam to reach the steady-state result Q(t − t0) =

Qτ t∗ is therefore τc =
√

3ϕV0/(πa2`). For Expt. J in Fig.
2 the crossover time is tc − t0 =

√
ϕV 3

0 /(πa
2`Q2)≈ 100 s,

which gives an order-of-magnitude estimate of the time when
V (t) approaches the incompressible limit. Note that although
the fast-injection experimental results (Fig. 2c) are independent
of µ, the crossover time tc for the slow-injection experiment
depends on ϕ and thus is affected by the foam properties.

A Quantitative Description for Foam-Driven Fractures
We can now apply our findings for V(τ) from the one-dimen-
sional experiments to foam-driven fractures in elastic solids (Fig.
1). We conduct fracturing experiments with Q = 5−30 mL/min,
E = 28−125 kPa, and ϕ=O(1) and, in each case, measure the
radius of the lens-shaped crack R(t) (Fig. 1D) as a function of
time, as plotted in Fig. 3B. We observe a linear increase of crack
radius R(t) with time, which differs from the crack growth driven
by incompressible flows (see SI Appendix).

For a lens-shaped fracture of radius R inside an elastic
medium with energy per unit area required to open new crack
surfaces 2γs (48, 49), the elastic stress around the fracture is
∆pe ≈EW /(2(1−σ2)R) (37, 46, 47), and the pressure required
to break the atomic/molecular bonds and extend the fracture
is ∆pf ≈

√
πγsE/(2R) (47–51). Assuming the stored elastic

energy in the solid matrix is instantaneously dissipated by creat-
ing new crack surfaces (31, 38, 48, 51), according to ∆pe ≈∆pf ,
we find

E

2(1−σ2)

W

R
≈
√
πγsE

2R
. [4]

For all of our experiments, the viscous stresses along the tube
∆pt are large compared with ∆pe and ∆pf . However, the viscous
stresses ∆pv due to flow within the fracture are negligible since
∆pv�∆pf , as shown in SI Appendix. In addition, the foam-
driven fractures are designed to grow horizontally so that the
buoyancy due to the density difference between foam and gelatin
does not affect the fracture dynamics.

We recall that the volumetric flux of foam in the tube is deter-
mined by the pressure drop along the tube ∆pt rather than
the stresses related to fracture formation ∆pe since ∆pe�∆pt .
Thus, the volume of foam V vented into the fracture at the outlet
of the needle obeys the same power law as the volume collected

at the tube outlet in the one-dimensional model experiments
(Fig. 2 and Eq. 3). Since ϕ=O(1) in the fracture experiments,
we use the volumetric flux in the fast-injection regime—that
is, V =βτα. Combining Eqs. 3 and 4, the experimental value
α= 2.5 (Fig. 2C), and the crack volume V = 4π/3WR2 for an
elliptical fracture, we obtain

R =Avf (t − t0), vf ≡
(

9β2a4`2E

32π(1−σ2)2γs

)1/5
Q

V0
, [5]

where A is a dimensionless numerical prefactor that depends
only on the shape of the fracture and t0 is the time when foam
first enters the gelatin matrix. The collapse of the rescaled experi-
mental data (symbols) at the late times in Fig. 3C shows excellent
agreement with the prediction for fracture dynamics given by Eq.
5 (Fig. 3C, solid line). Note that the speed of crack propagation
vf for foam injection is constant, in contrast with incompress-
ible fluid-driven fractures where the fracturing velocity decreases
with time.

Although foam consists of water and gas, the dynamics of
foam-driven fractures for ϕ=O(1), where the compressibility of
foam is important, differs significantly from those of fractures
driven by the injection of either water or gas. Water is effec-
tively incompressible, so V =Qt . Gas is compressible but has a
small resistance to flow in the tube, and so the pressure drop
is not large enough to probe compressibility effects. Foam is as
compressible as gas but has a large viscous resistance to flow
along the tube. This produces a large pressure drop in the tube,
∆pt ≥ p∞, causing compression. We checked the foam-fracture
experiments in the slow-injection regime (ϕ� 1) where com-
pressibility effects are small. The dynamics of fracture growth
driven by slow injection of foam obeys the same scaling law as
the classical results of crack growth driven by incompressible
flows, R(t)≈ (9Q2E/(32π3(1−σ2)2γs))

1/5t2/5, as shown in SI
Appendix.

Conclusion
In conclusion, we study the flow of compressible foam through
a tube and its impact on fractures in elastic solids driven
by foam injection. We found two flow regimes depending on
whether or not the injection is fast enough to cause signifi-
cant compression of the foam. In the fast-injection regime, a
time-dependent flow was observed as a result of compressed
bubbles in the foam. In the slow-injection regime, the flow
approaches the incompressible results within the experimen-
tal timescale. Finally, we demonstrated that a scaling argument
based on our empirical result of the mass balance of foam flow
and the stress balance for fracture propagation exhibits excellent
agreement with our experiments of foam-driven fractures. Our
results could potentially inform other systems involving injec-
tion of compressible two-phase flows in channels with narrow
geometries.

ACKNOWLEDGMENTS. We thank Sascha Hilgenfeldt and Allan Rubin for
helpful discussions. We acknowledge funding from National Science Foun-
dation Grant CBET-1509347. C.-Y.L. thanks the Princeton Environmental
Institute for funding via the Mary and Randall Hack ’69 Graduate Fund
and the Andlinger Center for Energy and the Environment for the Maeder
Graduate Fellowship. B.R. acknowledges partial support from the Carbon
Mitigation Initiative of Princeton University.

1. Figueredo RCR, Sabadini E (2003) Firefighting foam stability: The effect of the drag
reducer poly (ethylene) oxide. Coll Surf A 215:77–86.

2. Magrabi SA, Dlugogorski BZ, Jameson GJ (2002) A comparative study of drainage
characteristics in afff and fffp compressed-air fire-fighting foams. Fire Saf J 37:21–52.

3. Gardiner BS, Dlugogorski BZ, Jameson GJ (1998) Rheology of fire-fighting foams. Fire
Saf J 31:61–75.

4. McBride TO, et al. (2014) US Patent 8,806,866 B2. Systems and Methods for Foam-
Based Heat Exchange During Energy Storage and Recovery Using Compressed
Gas 19.

5. Klempner D, Frisch KC (1991) Handbook of Polymeric Foams and Foam Technology
(Hanser, Munich), Vol 404.

6. Lv Q, et al. (2017) Wall slipping behavior of foam with nanoparticle-armored bubbles
and its flow resistance factor in cracks. Sci Rep 7:5063.

7. Sun Q, et al. (2015) Properties of multi-phase foam and its flow behavior in porous
media. RSC Adv 5:67676–67689.

8. Worthen AJ, et al. (2014) Carbon dioxide-in-water foams stabilized with a mixture
of nanoparticles and surfactant for CO2 storage and utilization applications. Energy
Proced 63:7929–7938.

4 of 5 | www.pnas.org/cgi/doi/10.1073/pnas.1808068115 Lai et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808068115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808068115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808068115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1808068115/-/DCSupplemental
http://www.pnas.org/cgi/doi/10.1073/pnas.1808068115


A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

9. Aronson AS, Bergeron V, Fagan ME, Radke CJ (1994) The influence of disjoining
pressure on foam stability and flow in porous media. Coll Surf A 83:109–120.

10. Hirasaki GJ, Lawson JB (1985) Mechanisms of foam flow in porous media: Apparent
viscosity in smooth capillaries. Soc Petro Eng J 25:176–190.
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36. Cohen-Addad S, Höhler R, Pitois O (2013) Flow in foams and flowing foams. Annu
Rev Fluid Mech 45:241–267.

37. Spence DA, Sharp P (1819) Self-similar solutions for elastohydrodynamic cavity flow.
Proc R Soc A 400:289–313.

38. Detournay E (2016) Mechanics of hydraulic fractures. Annu Rev Fluid Mech 48:311–
339.

39. Denkov ND, Tcholakova S, Golemanov K, Subramanian V, Lips A (2006) Foam–wall
friction: Effect of air volume fraction for tangentially immobile bubble surface. Coll
Surf A 282:329–347.

40. Princen HM (1986) Osmotic pressure of foams and highly concentrated emulsions. I.
Theoretical considerations. Langmuir 2:519–524.

41. Denkov ND, Subramanian V, Gurovich D, Lips A (2005) Wall slip and viscous dissipation
in sheared foams: Effect of surface mobility. Coll Surf A 263:129–145.

42. Princen HM, Kiss AD (1987) Osmotic pressure of foams and highly concentrated emul-
sions. 2. Determination from the variation in volume fraction with height in an
equilibrated column. Langmuir 3:36–41.

43. Koehler SA, Hilgenfeldt S, Stone HA (2000) A generalized view of foam drainage:
Experiment and theory. Langmuir 16:6327–6341.

44. Koehler SA, Hilgenfeldt S, Stone HA (1999) Liquid flow through aqueous foams: The
node-dominated foam drainage equation. Phys Rev Lett 82:4232.

45. Stone HA, Koehler SA, Hilgenfeldt S, Durand M (2003) Perspectives on foam drainage
and the influence of interfacial rheology. J Phys: Condens Matter 15:S283–S290.

46. Sneddon IN (1946) The distribution of stress in the neighbourhood of a crack in an
elastic solid. Proc R Soc A 187:229–260.

47. Lister JR, Kerr RC (1991) Fluid-mechanical models of crack propagation and their
application to magma transport in dykes. J Geophys Res 96:10049–10077.

48. Griffith AA (1921) The phenomena of rupture and flow in solids. Phil Trans R Soc A
221:163–198.

49. Irwin GR (1957) Analysis of stresses and strains near the end of a crack traversing a
plate. J Appl Mech 24:361–364.

50. Rice JR (1968) Mathematical analysis in the mechanics of fracture. Fracture: An
Advanced Treatise, ed Liebowitz H (Academic, New York), Vol 2, pp 191–311.

51. Savitski AA, Detournay E (2002) Propagation of a penny-shaped fluid-driven fracture
in an impermeable rock: Asymptotic solutions. Int J Sol Struct 39:6311–6337.

Lai et al. PNAS Latest Articles | 5 of 5


