
Lecture 08-09 - Ice Sheet Dynamics

The flow of ice in an ice sheet is driven by gravity. We call the process of gravity-driven
flow a gravity current. We will introduce the steps required to obtain the “Shallow Ice
Approximation”. The analysis of a non-Newtonian ice sheet is slightly more involved than a
Newtonian case. We first discuss a Newtonian gravity current, and then the non-Newtonian
ice sheet dynamics. Here we consider a case with a zero bed slope θ = 0.

Below is a list of parameters:
ρ: fluid density, units: [kg/m3]. g: gravitational acceleration, units: [m/s2]
µ: (effective) fluid viscosity, units: [Pa·s] n = 3: Glen’s flow law exponent, units: dimensionless

B ≈ 108: ice hardness, units: [Pa·s1/n] φ ≥ 0: bed slope, units: [◦]
θ = tan(φ) ≥ 0: bed slope, units: dimensionless x : horizontal coordianbte, units: [m]
z: vertical coordinate, units: [m] t: time, units: [s]
W : width of the tank, units: [m] qin: constant volumetric fluid flux per unit width supplied at x = 0, unit: [m2/s]
−b(x) = −θx ≤ 0: bed elevation, units: [m] h(x, t): surface height of the fluid with respective to the z = 0 plane, units: [m]
H(x, t): fluid thickness, units: [m] L(t): fluid front location, units: [m]
u(x, z, t): horizontal fluid velocity, units: [m/s] w(x, z, t): vertical fluid velocity, units: [m/s]

Figure 1: Schematic of a gravity current on a sloped bed. When the angle φ is small the
fluid front location projected onto the x axis, L(t)cos(φ), is approximately L(t).

fig2
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1 Stokes equation
sec:1

In the last lecture we introduced stress balances on a infinitesimally small fluid element and
obtained the Stokes equation:

∇ · σ + f = 0, (1) stokes

where σ is the stress tensor and f = (fx, fy, fz) = (0, 0,−ρg) is the body force (unit: force
per unit volume) acting on the fluid.

1.1 A simple 2D glacier
sec:1.1

Now we are going to solve the Stokes equation analytically by examining a simple 2D glacier
flow (a 2D gravity current).

stressb1

x :
∂σxx
∂x

+
∂σzx
∂z

= 0 (2a)

z :
∂σxz
∂x

+
∂σzz
∂z

= ρg (2b)

Recall that, according to the definition of deviatoric stress τijstress

σij = τij when i 6= j (3a)

σij = −p+ τij when i = j, (3b)

where p is the fluid pressure. Equations (2) and (3) gives
stressb2

x : −∂p
∂x

+
∂τxx
∂x

+
∂τzx
∂z

= 0 (4a)

z :
∂τxz
∂x
− ∂p

∂z
+
∂τzz
∂z

= ρg (4b)

Next we assume all deviatoric normal stresses (τxx, τzz) are negligibly small compared to the
shear stress (τxz, τzx) (note that this is not true for ice shelves). Equation (4) become

stressb3

x : −∂p
∂x

+
∂τzx
∂z

= 0 (5a)

z :
∂τxz
∂x
− ∂p

∂z
= ρg (5b)

Recall that the for for a incompressible medium the deviatoric stress and strain rate follows
the relationship

τij = 2µε̇ij, where ε̇ij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (6) consti

According to the definition of strain rate ε̇zx = ε̇xz = 1/2(∂u/∂z + ∂w/∂x). Assuming all of
the shear takes place in the plane normal to z, ∂w/∂x = 0. The only non-zero component
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of the strain rate and the shear stress at the surface are

ε̇xz = ε̇zx ≡
1

2

(
∂u

∂z
+
∂w

∂x

)
=

1

2

∂u

∂z
and (7a) strainxz

τxz = τzx = 2µε̇zx = µ
∂u

∂z
, (7b) stressxz

respectively. Equations (5) and (7b) givesstressb4

x : −∂p
∂x

+
∂

∂z

(
µ
∂u

∂z

)
= 0 (8a)

z :
∂

∂x

(
µ
∂u

∂z

)
− ∂p

∂z
= ρg (8b)

It can be demonstrated that ∂
∂x

(
µ∂u
∂z

)
is much smaller compared to the body force ρg.

Therefore Eqns (8) becomes

x : −∂p
∂x

+
∂

∂z

(
µ
∂u

∂z

)
= 0 (9a) stressb5

z : −∂p
∂z

= ρg (9b) stressb6

Because the density of the air molecules is negligibly small compared to the density of ice,
the fluid pressure at the surface of the current z = h(x, t) is zero. Integrating equation (9b)
vertically we obtain the fluid pressure p within the gravity current

p = ρg(h− z) within 0 ≤ z ≤ h. (10) p

According to equation (9a), the fluid deformation is driven by the horizontal gradient of the
fluid pressure. Substituting (10) into (9a) gives the x-direction of the Stokes equation

x : −ρg∂h
∂x

+
∂

∂z

(
µ
∂u

∂z

)
= 0 within 0 ≤ z ≤ h. (11) stressb7

This is the governing equation for a 2D gravity current, also called the “Shallow Ice Approx-
imation” (SIA).

1.1.1 Boundary conditions

To solve for the velocity u in (11) we need two conditions for velocity u. Assume a no slip
boundary condition at the bed.

u(z = 0) = 0. (12) ub

Note that if the bed is lubricated (like some places beneath ice sheets) this non-slip condition
would not be true, but we will ignore that possibility here. In the corn syrup lab experiment,
the non-slip condition at the bed holds. At the fluid surface the shear stress is zero (also
called the free surface) because air exerts negligibly small shear stress on the fluid surface:

τzx(z = h(x, t)) = 2µε̇zx = 0. (13) taus
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According to the definition of strain rate ε̇zx = 1/2(∂u/∂z + ∂w/∂x). Assuming all of the
shear takes place in the plane normal to z, ∂w/∂x = 0 and the zero shear stress condition
at the surface (13) becomes

τzx(z = h(x, t)) = µ
∂u

∂z
= 0. (14) dudzs

However, the shear stress is non-zero within the fluid, which drives shear deformation of the
fluid.

1.2 Lateral confinements
sec:1.2

So far we have been focusing on the velocity profile along an x− z plane. In the experiment
you will see interesting shear deformation at the fluid surface z = h. This is due to the
effects from the lateral walls (y = ±W/2). We can solve for the velocity profile at the fluid
surface. We first extend the previous stress expression (4) to 3D:

3d1

x : −∂p
∂x

+
∂τyx
∂y

+
∂τzx
∂z

= 0 (15a)

y :
∂τxy
∂x
− ∂p

∂y
+
∂τzy
∂z

= 0 (15b)

z :
∂τxz
∂x

+
∂τyz
∂y
− ∂p

∂z
= ρg (15c)

Note that there are many simplifications we can make when solving for the velocity at the
fluid surface. First if W � H the dominant shear stress gradient in (15) are ∂τxy/∂x and
∂τyx/∂y. At the fluid surface, assuming all of the shear takes place in the plane normal to y,
we have ∂v/∂x = 0. The horizontal shear strain rate and the shear stress at the surface are

ε̇xy = ε̇yx ≡
1

2

(
∂u

∂y
+
∂v

∂x

)
=

1

2

∂u

∂y
and (16a) strainxy

τxy = τyx = 2µε̇yx = µ
∂u

∂y
, (16b) stressxy

respectively. Substituting (16b) into (15),
3d2

x : −∂p
∂x

+
∂

∂y

(
µ
∂u

∂y

)
= 0 (17a) 3d2x

y :
∂

∂x

(
µ
∂u

∂y

)
− ∂p

∂y
= 0 (17b)

z : −∂p
∂z

= ρg (17c) 3d2z

Similar to Section 1.1, integrating (17c) along z gives

p = ρg(h− z) within 0 ≤ z ≤ h, −W/2 ≤ y ≤ W/2. (18) p2
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Substituting (18) into (17a), the velocity at the fluid surface obeys

x : −ρg∂h
∂x

+
∂

∂y

(
µ
∂u

∂y

)
= 0 within z = h(x), −W/2 ≤ y ≤ W/2. (19) 3dx2

Equation (19) looks very similar to (11)! In (11) the pressure gradient associated with ∂h/∂x
is balanced by the vertical shear taking place in the plane normal to z. In (19) the pressure
gradient associated with ∂h/∂x is balanced by the lateral shear taking place in the plane
normal to y.

1.2.1 Boundary conditions

Because the system is symmetric with respect to the y = 0 plane, we can directly solve for
u(y) for the positive half plane y > 0 and the velocity at a particular y < 0 is the same as
that at y > 0. To solve for u using (19) we needs two boundary conditions. The fluid at the
walls obeys no-slip boundary condition:

u(x, z = h, y = W/2) = 0. (20) uw

At the y = 0 plane, a nonzero velocity gradient ∂u/∂y would result in a discontinuous
velocity at y = 0. The second condition therefore requires

∂u

∂y
= 0 at y = 0, z = h. (21) sym

2 A Newtonian gravity current
sec:2

Consider a Newtonian fluid (constant viscosity µ) flowing down a rigid bed with θ = 0. The
schematics and the coordinate system are illustrated in figure 1. Fluid flux is supplied at a
constant rate qin at x = 0. The vertical velocity of the fluid is negligibly small compared
with the horizontal velocity w � u. We consider the two cases described in Sections 1.1 and
1.2.

2.1 A simple 2D glacier

Let’s first focus on the simple 2D glacier case (on the x− z plane).

2.1.1 Velocity profile u

To solve (11) (a second order differential equation) for velocity u we can simply integra-
tion (11) along z twice and use two boundary conditions, (12) and (14), to get rid of the
integration constants. Integrating (11) along z gives

−ρg∂h
∂x
z + µ

∂u

∂z
+ c1 = 0, (22) u1
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where c1 is an integration constant. Integrating (22) along z again gives

−ρg
2

∂h

∂x
z2 + µu+ c1z + c2 = 0, (23) u2

Applying the no-slip boundary condition (12) and the zero shear stress condition (14) to
(23) and (22), respectively, we obtain

c

c2 = 0 (24a)

c1 = ρgh
∂h

∂x
. (24b)

All together, (24) and (23) gives the velocity profile

u = −ρg
2µ

∂h

∂x
z(2h− z) within 0 ≤ z ≤ h. (25) u3

According to (25) the velocity at the fluid surface is

us = −ρg
2µ

∂h

∂x
h2. (26) us

Because the surface height gradient ∂h/∂x < 0 is negative the fluid surface velocity us > 0
is positive. We expect fluid flowing in the positive x direction. We can rewrite the velocity
(25) using (26):

u = us
z

h
(2− z

h
) within 0 ≤ z ≤ h. (27) u4

2.1.2 Depth-integrated fluid flux q

Integrating the velocity (27), we obtain the horizontal fluid flux (volume per unit width W
per unit time) crossing a x-plane is

q =

∫ h

0

udz =
2

3
ush. (28) q

2.1.3 Shear stress profile

The shear stress related to the shear strain rate via (assuming ∂w/∂x = 0)

τzx = µ
∂u

∂z
. (29) shear

Substituting the velocity profile (25) into (44) we obtain that the shear stress

τzx = −ρg∂h
∂x

(h− z) within 0 ≤ z ≤ h. (30) shear2

increases linearly with depth! τzx = 0 at the fluid surface z = h(x) (because when we solved
for velocity we used the zero shear stress condition (14)) and τzx = −ρgh∂h/∂x > 0 at the
fluid bed z = 0.
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2.2 Lateral confinements

So far we have been focusing on the velocity profile along an x− z plane. In the experiment
you will see interesting shear deformation at the fluid surface z = h. Next let’s examine the
velocity profile at the fluid surface. The stress balance of fluid at the surface obeys (19). At
the fluid surface, all of the shear takes place in the plane normal to y. Following similar steps
as Section 1.1, equation (19) with boundary conditions ((20) and (21)) yields a parabolic
surface velocity profile

u = −ρg
2µ

∂h

∂x
((W/2)2 − y2) at z = h, −W/2 ≤ y ≤ W/2. (31) laun1

3 Ice sheet- a non-Newtonian gravity current
sec:3

In this section we will extend the analysis for a Newtonian fluid to ice. Fluid flux is supplied
at a constant rate qin at x = 0. For simplicity let’s consider θ = 0 and z = 0 is at the bottom
of the ice sheet. Ice is a shear-thinning fluid that follows Glen’s flow law

τij = 2µε̇ij, where µ = B/2ε̇1/n−1
e (32) Glen

is the effectively ice viscosity, B is the ice hardness that is treated as a constant here, n = 3
is the exponent, and τij and ε̇ij are the components in the stress and strain rate tensor,
respectively. ε̇e is the effective strain rate.

3.1 A simple 2D glacier

For a simple 2D glacier, we assume all of the shear takes place in the plane normal to z. The
only non-zero component in the stress and strain rate tensors are listed in (7a) and (7b).
Thus ε̇e = ε̇zx and the effective ice viscosity in eqn (32) becomes

µ =
B

2
ε̇1/n−1
e =

B

2
ε̇1/n−1
zx =

B

2

(
1

2

∂u

∂z

)1/n−1

(33) viscyz

The zero stress condition (14) can be written as:

τzx(z = h(x, t)) = µ
∂u

∂z
= B

(
1

2

∂u

∂z

)1/n

= 0. (34) zerostressice

3.1.1 Velocity profile u

To solve for velocity u, we substitute the effective viscosity of ice (33) into the Shallow Ice
Approximation (11):

x : −ρg∂h
∂x

+
∂

∂z

(
B

(
1

2

∂u

∂z

)1/n
)

= 0 within 0 ≤ z ≤ h. (35) ui1
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Integrate (35) along z:

x : −ρg∂h
∂x
z +B

(
1

2

∂u

∂z

)1/n

+ c1 = 0 (36) ui2

Apply the zero stress condition (34) to (36) we get c1 = ρgh∂h/∂x. Substitute c1 into (36)
gives

x : −ρg∂h
∂x

(h− z) = B

(
1

2

∂u

∂z

)1/n

(37) ui3

We raise the both side of the equation to the n power.

x : 2

(
−ρg
B

∂h

∂x
(h− z)

)n
=
∂u

∂z
(38) ui4

Integrate (38) along z

x : − 2

n+ 1

(
−ρg
B

∂h

∂x

)n
(h− z)n+1 + c2 = u (39) ui5

Apply the no slip condition to (39) gives c2 = 2
n+1

(
−ρg

B
∂h
∂x

)n
hn+1. Substitute c2 into (39)

gives the vertical velocity profile”

u = c3(hn+1 − (h− z)n+1), where c3 =
2

n+ 1

(
−ρg
B

∂h

∂x

)n
(40) ui6

At the ice surface, (40) gives a surface velocity of

us =
2

n+ 1

(
−ρg
B

∂h

∂x

)n
hn+1 (41) uis

The vertical velocity profile (40) can be written in terms of us ((41)):

u = us

(
1n+1 −

(
1− z

h

)n+1
)

(42) ui7

Using (41), ρ ≈ 103 kg/m3, g ≈ 10 m/s2, h ≈ 103 m, n = 3, B ≈ 108 Pa·s1/3, and surface
slope −∂h/∂x ≈ 0.02, the surface velocity is about 200 m/yr. Note that the surface velocity
is very sensitive to the choice of parameters for ∂h/∂x,B, and h especially for large positive
power exponent 2 ≤ n ≤ 4.

3.1.2 Depth-integrated fluid flux q

Integrating the velocity (42), we obtain the horizontal fluid flux (volume per unit width W
per unit time) crossing a x-plane is

q =

∫ h

0

udz =
n+ 1

n+ 2
ush. (43) qi

When n ≈ 4 the flux is q ≈ 0.83ush which is 24% higher than the flux q ≈ 0.67ush estimated
at n ≈ 1.

8



3.1.3 Shear stress profile

The shear stress related to the shear strain rate via (assuming ∂w/∂x = 0)

τzx = µ
∂u

∂z
. (44) shear

Substituting the velocity profile (40) into (44) we obtain that the shear stress

τzx = −ρg∂h
∂x

(h− z) within 0 ≤ z ≤ h. (45) shear2

is exactly the same as what we found for the Newtonian fluid! The shear stress increases
linearly with depth, and independent of the effective viscosity of the fluid! The shear stress
is the largest at the bed, τzx = −ρgh∂h/∂x at z = 0.

3.2 Lateral confinements

Finally, let’s examine the velocity profile at the fluid surface. At the fluid surface, all of the
shear takes place in the plane normal to y. The nonzero component of strain rates are shown
in (16a). The effective strain rate is therefore ε̇e = ε̇yx. The effective viscosity of ice (32) can
be written as

µ =
B

2
ε̇1/n−1
e =

B

2
ε̇1/n−1
yx =

B

2

(
1

2

∂u

∂y

)1/n−1

(46) viscyx

Substituting effective viscosity (46) into the governing equation (19), along with the bound-
ary conditions (20) and (21), yields a surface velocity profile

u =
2

n+ 1

(
−ρg
B

∂h

∂x

)n
((W/2)n+1 − |y|n+1) at z = h, −W/2 ≤ y ≤ W/2. (47)

When n = 1 this recovers (31) in which the viscosity µ = B/2 would be a constant (inde-
pendent of strain rate). For glacial ice 2 ≤ n ≤ 4.
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